亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessing kidney stone composition using smartphone microscopy and deep neural networks

显微镜 人工神经网络 作文(语言) 医学 人工智能 地质学 计算机科学 艺术 病理 文学类
作者
Ege Gungor Onal,Hakan Tekgul
出处
期刊:BJUI compass [Wiley]
卷期号:3 (4): 310-315 被引量:14
标识
DOI:10.1002/bco2.137
摘要

Abstract Objectives To propose a point‐of‐care image recognition system for kidney stone composition classification using smartphone microscopy and deep convolutional neural networks. Materials and methods A total of 37 surgically extracted human kidney stones consisting of calcium oxalate (CaOx), cystine, uric acid (UA) and struvite stones were included in the study. All of the stones were fragmented from percutaneous nephrolithotomy (PCNL). The stones were classified using Fourier transform infrared spectroscopy (FTIR) analysis before obtaining smartphone microscope images. The size of the stones ranged from 5 to 10 mm in diameter. Nurugo 400× smartphone microscope (Nurugo, Seoul, Republic of Korea) was functionalized to acquire microscopic images (magnification = 25×) of dry kidney stones using iPhone 6s+ (Apple, Cupertino, CA, USA). Each kidney stone was imaged in six different locations. In total, 222 images were captured from 37 stones. A novel convolutional neural network architecture was built for classification, and the model was assessed using accuracy, positive predictive value, sensitivity and F1 scores. Results We achieved an overall and weighted accuracy of 88% and 87%, respectively, with an average F1 score of 0.84. The positive predictive value, sensitivity and F1 score for each stone type were respectively reported as follows: CaOx (0.82, 0.83, 0.82), cystine (0.80, 0.88, 0.84), UA (0.92, 0.77, 0.85) and struvite (0.86, 0.84, 0.85). Conclusion We demonstrate a rapid and accurate point of care diagnostics method for classifying the four types of kidney stones. In the future, diagnostic tools that combine smartphone microscopy with artificial intelligence (AI) can provide accessible health care that can support physicians in their decision‐making process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
8秒前
Bob完成签到,获得积分10
15秒前
胡瓜拌凉皮完成签到,获得积分10
17秒前
慕青应助辣味锅包肉采纳,获得10
17秒前
18秒前
浮游应助辣味锅包肉采纳,获得10
20秒前
yangshu发布了新的文献求助10
23秒前
34秒前
Kz发布了新的文献求助10
41秒前
华仔应助Kz采纳,获得10
55秒前
kklkimo完成签到,获得积分10
1分钟前
科研cc应助唐泽雪穗采纳,获得60
1分钟前
1分钟前
唐泽雪穗发布了新的文献求助60
1分钟前
童严柯完成签到,获得积分10
1分钟前
zy997987876应助童严柯采纳,获得20
1分钟前
zyjsunye完成签到 ,获得积分10
2分钟前
2分钟前
rio完成签到 ,获得积分10
2分钟前
2分钟前
浮游应助yangshu采纳,获得10
2分钟前
英俊的铭应助yangshu采纳,获得10
2分钟前
MchemG举报哈哈哈求助涉嫌违规
2分钟前
2分钟前
yangshu完成签到,获得积分10
2分钟前
XingRang发布了新的文献求助10
2分钟前
科研cc应助唐泽雪穗采纳,获得100
2分钟前
2分钟前
唐泽雪穗发布了新的文献求助100
2分钟前
lixuebin完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
帅气的安柏完成签到,获得积分10
4分钟前
科研cc应助唐泽雪穗采纳,获得40
4分钟前
科研cc应助唐泽雪穗采纳,获得80
4分钟前
科研cc应助唐泽雪穗采纳,获得80
4分钟前
科研cc应助唐泽雪穗采纳,获得70
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078338
求助须知:如何正确求助?哪些是违规求助? 4297112
关于积分的说明 13387869
捐赠科研通 4119800
什么是DOI,文献DOI怎么找? 2256288
邀请新用户注册赠送积分活动 1260569
关于科研通互助平台的介绍 1194176