Assessing kidney stone composition using smartphone microscopy and deep neural networks

显微镜 人工神经网络 作文(语言) 医学 人工智能 地质学 计算机科学 艺术 病理 文学类
作者
Ege Gungor Onal,Hakan Tekgul
出处
期刊:BJUI compass [Wiley]
卷期号:3 (4): 310-315 被引量:14
标识
DOI:10.1002/bco2.137
摘要

Abstract Objectives To propose a point‐of‐care image recognition system for kidney stone composition classification using smartphone microscopy and deep convolutional neural networks. Materials and methods A total of 37 surgically extracted human kidney stones consisting of calcium oxalate (CaOx), cystine, uric acid (UA) and struvite stones were included in the study. All of the stones were fragmented from percutaneous nephrolithotomy (PCNL). The stones were classified using Fourier transform infrared spectroscopy (FTIR) analysis before obtaining smartphone microscope images. The size of the stones ranged from 5 to 10 mm in diameter. Nurugo 400× smartphone microscope (Nurugo, Seoul, Republic of Korea) was functionalized to acquire microscopic images (magnification = 25×) of dry kidney stones using iPhone 6s+ (Apple, Cupertino, CA, USA). Each kidney stone was imaged in six different locations. In total, 222 images were captured from 37 stones. A novel convolutional neural network architecture was built for classification, and the model was assessed using accuracy, positive predictive value, sensitivity and F1 scores. Results We achieved an overall and weighted accuracy of 88% and 87%, respectively, with an average F1 score of 0.84. The positive predictive value, sensitivity and F1 score for each stone type were respectively reported as follows: CaOx (0.82, 0.83, 0.82), cystine (0.80, 0.88, 0.84), UA (0.92, 0.77, 0.85) and struvite (0.86, 0.84, 0.85). Conclusion We demonstrate a rapid and accurate point of care diagnostics method for classifying the four types of kidney stones. In the future, diagnostic tools that combine smartphone microscopy with artificial intelligence (AI) can provide accessible health care that can support physicians in their decision‐making process.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
芒果西米露完成签到 ,获得积分10
3秒前
4秒前
doby完成签到,获得积分10
5秒前
6秒前
9秒前
9秒前
10秒前
xiaobai123456发布了新的文献求助10
10秒前
Kyrie完成签到,获得积分10
12秒前
道森完成签到 ,获得积分10
12秒前
FoxLY完成签到,获得积分10
13秒前
13秒前
jasmine发布了新的文献求助20
13秒前
小皮皮发布了新的文献求助10
13秒前
睿智小能完成签到 ,获得积分10
14秒前
张旭完成签到,获得积分10
15秒前
同你讲发布了新的文献求助10
16秒前
糖炒栗子完成签到 ,获得积分10
16秒前
皮皮虾完成签到 ,获得积分10
16秒前
绿麦盲区完成签到,获得积分10
16秒前
香蕉觅云应助Dailei采纳,获得10
17秒前
冷静冰萍完成签到 ,获得积分10
19秒前
白色完成签到 ,获得积分10
19秒前
魏青瑜应助幽兰采纳,获得10
20秒前
xiaobai123456发布了新的文献求助10
20秒前
新手上路完成签到,获得积分10
21秒前
22秒前
23秒前
24秒前
24秒前
24秒前
传奇3应助科研通管家采纳,获得10
25秒前
斯文败类应助科研通管家采纳,获得10
25秒前
搜集达人应助科研通管家采纳,获得10
25秒前
深情安青应助科研通管家采纳,获得10
25秒前
CodeCraft应助科研通管家采纳,获得10
25秒前
同你讲完成签到,获得积分10
26秒前
wrjww发布了新的文献求助10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Psychological Well-being The Complexities of Mental and Emotional Health 500
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5856827
求助须知:如何正确求助?哪些是违规求助? 6324695
关于积分的说明 15635304
捐赠科研通 4971265
什么是DOI,文献DOI怎么找? 2681302
邀请新用户注册赠送积分活动 1625215
关于科研通互助平台的介绍 1582265