Assessing kidney stone composition using smartphone microscopy and deep neural networks

显微镜 人工神经网络 作文(语言) 医学 人工智能 地质学 计算机科学 艺术 病理 文学类
作者
Ege Gungor Onal,Hakan Tekgul
出处
期刊:BJUI compass [Wiley]
卷期号:3 (4): 310-315 被引量:14
标识
DOI:10.1002/bco2.137
摘要

Abstract Objectives To propose a point‐of‐care image recognition system for kidney stone composition classification using smartphone microscopy and deep convolutional neural networks. Materials and methods A total of 37 surgically extracted human kidney stones consisting of calcium oxalate (CaOx), cystine, uric acid (UA) and struvite stones were included in the study. All of the stones were fragmented from percutaneous nephrolithotomy (PCNL). The stones were classified using Fourier transform infrared spectroscopy (FTIR) analysis before obtaining smartphone microscope images. The size of the stones ranged from 5 to 10 mm in diameter. Nurugo 400× smartphone microscope (Nurugo, Seoul, Republic of Korea) was functionalized to acquire microscopic images (magnification = 25×) of dry kidney stones using iPhone 6s+ (Apple, Cupertino, CA, USA). Each kidney stone was imaged in six different locations. In total, 222 images were captured from 37 stones. A novel convolutional neural network architecture was built for classification, and the model was assessed using accuracy, positive predictive value, sensitivity and F1 scores. Results We achieved an overall and weighted accuracy of 88% and 87%, respectively, with an average F1 score of 0.84. The positive predictive value, sensitivity and F1 score for each stone type were respectively reported as follows: CaOx (0.82, 0.83, 0.82), cystine (0.80, 0.88, 0.84), UA (0.92, 0.77, 0.85) and struvite (0.86, 0.84, 0.85). Conclusion We demonstrate a rapid and accurate point of care diagnostics method for classifying the four types of kidney stones. In the future, diagnostic tools that combine smartphone microscopy with artificial intelligence (AI) can provide accessible health care that can support physicians in their decision‐making process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助苦哈哈采纳,获得10
刚刚
刚刚
香蕉觅云应助典雅的俊驰采纳,获得10
1秒前
1秒前
白瓜完成签到 ,获得积分10
1秒前
qwerty发布了新的文献求助10
1秒前
2秒前
科研通AI5应助黄晟钊采纳,获得10
2秒前
dafo完成签到,获得积分10
3秒前
猪猪hero发布了新的文献求助10
4秒前
4秒前
FashionBoy应助shanks采纳,获得10
5秒前
5秒前
活泼的便当完成签到,获得积分10
5秒前
5秒前
T拐拐发布了新的文献求助10
5秒前
6秒前
缓缓矛盾体完成签到,获得积分10
6秒前
lzy完成签到,获得积分10
6秒前
嗯哼完成签到,获得积分10
6秒前
7秒前
7秒前
朴素亦绿完成签到,获得积分10
7秒前
杨自强发布了新的文献求助10
7秒前
马德里就思议完成签到,获得积分10
8秒前
wanci应助lv采纳,获得10
8秒前
kryptonite发布了新的文献求助10
8秒前
嗯哼发布了新的文献求助10
9秒前
善学以致用应助何佳采纳,获得10
9秒前
9秒前
9秒前
9秒前
孤独的一鸣应助TINASURE采纳,获得10
10秒前
10秒前
lv发布了新的文献求助10
10秒前
聪慧恶天关注了科研通微信公众号
10秒前
lyf发布了新的文献求助200
11秒前
11秒前
大橙子完成签到,获得积分10
11秒前
xinying发布了新的文献求助10
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978852
求助须知:如何正确求助?哪些是违规求助? 3522781
关于积分的说明 11214876
捐赠科研通 3260258
什么是DOI,文献DOI怎么找? 1799853
邀请新用户注册赠送积分活动 878711
科研通“疑难数据库(出版商)”最低求助积分说明 807059