Assessing kidney stone composition using smartphone microscopy and deep neural networks

显微镜 人工神经网络 作文(语言) 医学 人工智能 地质学 计算机科学 艺术 病理 文学类
作者
Ege Gungor Onal,Hakan Tekgul
出处
期刊:BJUI compass [Wiley]
卷期号:3 (4): 310-315 被引量:14
标识
DOI:10.1002/bco2.137
摘要

Abstract Objectives To propose a point‐of‐care image recognition system for kidney stone composition classification using smartphone microscopy and deep convolutional neural networks. Materials and methods A total of 37 surgically extracted human kidney stones consisting of calcium oxalate (CaOx), cystine, uric acid (UA) and struvite stones were included in the study. All of the stones were fragmented from percutaneous nephrolithotomy (PCNL). The stones were classified using Fourier transform infrared spectroscopy (FTIR) analysis before obtaining smartphone microscope images. The size of the stones ranged from 5 to 10 mm in diameter. Nurugo 400× smartphone microscope (Nurugo, Seoul, Republic of Korea) was functionalized to acquire microscopic images (magnification = 25×) of dry kidney stones using iPhone 6s+ (Apple, Cupertino, CA, USA). Each kidney stone was imaged in six different locations. In total, 222 images were captured from 37 stones. A novel convolutional neural network architecture was built for classification, and the model was assessed using accuracy, positive predictive value, sensitivity and F1 scores. Results We achieved an overall and weighted accuracy of 88% and 87%, respectively, with an average F1 score of 0.84. The positive predictive value, sensitivity and F1 score for each stone type were respectively reported as follows: CaOx (0.82, 0.83, 0.82), cystine (0.80, 0.88, 0.84), UA (0.92, 0.77, 0.85) and struvite (0.86, 0.84, 0.85). Conclusion We demonstrate a rapid and accurate point of care diagnostics method for classifying the four types of kidney stones. In the future, diagnostic tools that combine smartphone microscopy with artificial intelligence (AI) can provide accessible health care that can support physicians in their decision‐making process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力的寻琴完成签到,获得积分10
刚刚
QuxiZhang完成签到 ,获得积分10
3秒前
4秒前
5秒前
5秒前
烟花应助高挑的宛海采纳,获得10
5秒前
木之木完成签到,获得积分10
7秒前
CJ完成签到,获得积分10
8秒前
Candice应助独特的紫蓝采纳,获得10
9秒前
晏清发布了新的文献求助10
10秒前
加油鸭鸭鸭完成签到,获得积分10
10秒前
10秒前
干饭人发布了新的文献求助10
10秒前
青田101完成签到,获得积分10
10秒前
Blaseaka完成签到 ,获得积分10
12秒前
封闭货车关注了科研通微信公众号
14秒前
14秒前
斯文败类应助potatozhou采纳,获得30
14秒前
XYZ完成签到 ,获得积分10
14秒前
15秒前
Gys072519完成签到,获得积分10
16秒前
17秒前
武雨寒发布了新的文献求助10
18秒前
晏清完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
森sen发布了新的文献求助30
22秒前
跳跃的访琴完成签到 ,获得积分10
24秒前
scl完成签到,获得积分10
25秒前
小汪发布了新的文献求助10
25秒前
25秒前
Gus发布了新的文献求助10
27秒前
27秒前
上官若男应助任性半凡采纳,获得10
28秒前
Lucas应助deadpool采纳,获得10
28秒前
通天塔发布了新的文献求助10
29秒前
缓慢夕阳发布了新的文献求助10
29秒前
淡淡的谷槐完成签到,获得积分10
31秒前
可可可11完成签到 ,获得积分10
31秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254201
求助须知:如何正确求助?哪些是违规求助? 2896520
关于积分的说明 8292993
捐赠科研通 2565415
什么是DOI,文献DOI怎么找? 1393024
科研通“疑难数据库(出版商)”最低求助积分说明 652418
邀请新用户注册赠送积分活动 629880