Assessing kidney stone composition using smartphone microscopy and deep neural networks

显微镜 人工神经网络 作文(语言) 医学 人工智能 地质学 计算机科学 艺术 病理 文学类
作者
Ege Gungor Onal,Hakan Tekgul
出处
期刊:BJUI compass [Wiley]
卷期号:3 (4): 310-315 被引量:14
标识
DOI:10.1002/bco2.137
摘要

Abstract Objectives To propose a point‐of‐care image recognition system for kidney stone composition classification using smartphone microscopy and deep convolutional neural networks. Materials and methods A total of 37 surgically extracted human kidney stones consisting of calcium oxalate (CaOx), cystine, uric acid (UA) and struvite stones were included in the study. All of the stones were fragmented from percutaneous nephrolithotomy (PCNL). The stones were classified using Fourier transform infrared spectroscopy (FTIR) analysis before obtaining smartphone microscope images. The size of the stones ranged from 5 to 10 mm in diameter. Nurugo 400× smartphone microscope (Nurugo, Seoul, Republic of Korea) was functionalized to acquire microscopic images (magnification = 25×) of dry kidney stones using iPhone 6s+ (Apple, Cupertino, CA, USA). Each kidney stone was imaged in six different locations. In total, 222 images were captured from 37 stones. A novel convolutional neural network architecture was built for classification, and the model was assessed using accuracy, positive predictive value, sensitivity and F1 scores. Results We achieved an overall and weighted accuracy of 88% and 87%, respectively, with an average F1 score of 0.84. The positive predictive value, sensitivity and F1 score for each stone type were respectively reported as follows: CaOx (0.82, 0.83, 0.82), cystine (0.80, 0.88, 0.84), UA (0.92, 0.77, 0.85) and struvite (0.86, 0.84, 0.85). Conclusion We demonstrate a rapid and accurate point of care diagnostics method for classifying the four types of kidney stones. In the future, diagnostic tools that combine smartphone microscopy with artificial intelligence (AI) can provide accessible health care that can support physicians in their decision‐making process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小飞完成签到,获得积分10
刚刚
牛文文完成签到,获得积分10
刚刚
GZX完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
gaga关注了科研通微信公众号
2秒前
搜集达人应助阿敏采纳,获得10
2秒前
2秒前
复杂瑛发布了新的文献求助10
3秒前
在水一方应助不对也没错采纳,获得10
3秒前
小飞发布了新的文献求助30
4秒前
4秒前
豪哥大大完成签到,获得积分10
5秒前
5秒前
汉堡包应助神勇的曼文采纳,获得10
6秒前
田様应助顾闭月采纳,获得10
6秒前
新的心跳发布了新的文献求助10
6秒前
白石杏发布了新的文献求助10
6秒前
风中寄云发布了新的文献求助10
7秒前
langzi完成签到,获得积分10
9秒前
haifang完成签到,获得积分10
9秒前
大个应助zhui采纳,获得10
9秒前
哎呀完成签到 ,获得积分10
10秒前
11秒前
哈哈哈哈发布了新的文献求助10
11秒前
11秒前
Wang完成签到,获得积分10
11秒前
请叫我风吹麦浪应助kevin采纳,获得20
12秒前
12秒前
12秒前
吃点水果保护局完成签到 ,获得积分10
13秒前
gs完成签到,获得积分10
13秒前
Xyyy完成签到,获得积分10
13秒前
14秒前
白石杏完成签到,获得积分10
16秒前
ll200207完成签到,获得积分10
17秒前
凶狠的乐巧完成签到,获得积分10
17秒前
Lin发布了新的文献求助10
18秒前
三七发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794