Droplet digital recombinase polymerase amplification (ddRPA) reaction unlocking via picoinjection

微流控 核酸 重组酶聚合酶扩增 环介导等温扩增 数字聚合酶链反应 生物系统 纳米技术 荧光 DNA 重组酶 化学 生物 生物物理学 计算机科学 聚合酶链反应 材料科学 物理 生物化学 量子力学 重组 基因
作者
Johnson Q. Cui,Frank X. Liu,Hojeong Park,Ka Wai Chan,Tyler Leung,Ben Zhong Tang,Shuhuai Yao
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:202: 114019-114019 被引量:47
标识
DOI:10.1016/j.bios.2022.114019
摘要

Recombinase polymerase amplification (RPA) has been recognized as a promising isothermal amplification method for nucleic acid detection. However, the digital format of RPA is still challenging to implement due to its MgOAc-initiated reaction feature and the inherent non-specific amplification. Here we develop a Picoinjection Aided Digital reaction unLOCKing (PADLOCK) approach utilizing droplet microfluidics to achieve droplet digital RPA (ddRPA) for absolute nucleic acid quantification. By coupling a microfluidic picoinjector with a droplet generator, the reaction initiator MgOAc is dosed into droplets containing MgOAc-deprived RPA master mix for controlled digital reaction unlocking, which completely circumvents premature amplification. The discretization of the targets to a single-molecule level in confined droplets endows absolute quantification of the copy number. Coupled with CRISPR/Cas13a sensing, the ddRPA demonstrates single molecule detection ability within 30 min with significantly enhanced signal-to-noise ratio (S/N ratio>6) and uniform fluorescence signal reporting, facilitating the precise quantification of nucleic acids. Furthermore, the utility of the PADLOCK-CRISPR assay has been validated with 22 clinical samples, which generated results in 100% concordance with qPCR. We believe the coupling of droplet microfluidic technology with digital RPA will pave the way towards ultrasensitive and precise nucleic acid quantification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
星辰大海应助yatou5651采纳,获得10
1秒前
夜空中最亮的星完成签到,获得积分10
1秒前
咯咯咯发布了新的文献求助20
2秒前
a1oft发布了新的文献求助10
2秒前
地狱跳跳虎完成签到,获得积分10
3秒前
3秒前
3秒前
朱一龙发布了新的文献求助30
4秒前
中大王完成签到,获得积分10
4秒前
4秒前
啦啦啦完成签到 ,获得积分10
4秒前
艺阳完成签到,获得积分10
5秒前
5秒前
俏皮大地完成签到 ,获得积分10
5秒前
LLL发布了新的文献求助10
5秒前
共享精神应助卡卡采纳,获得10
6秒前
6秒前
6秒前
6秒前
大菠萝发布了新的文献求助10
6秒前
HEIKU应助帅酷的小刺猬采纳,获得10
7秒前
深情的嘉熙完成签到,获得积分10
7秒前
顺利涵菡完成签到,获得积分20
7秒前
斯文败类应助Jack采纳,获得10
7秒前
7秒前
狂野觅云发布了新的文献求助10
8秒前
wanci应助yyy采纳,获得10
8秒前
Abao发布了新的文献求助10
9秒前
无花果应助jagger采纳,获得10
9秒前
旺大财发布了新的文献求助10
9秒前
tanbao完成签到,获得积分10
10秒前
共享精神应助MHB采纳,获得50
10秒前
美丽小蕾发布了新的文献求助10
10秒前
anan发布了新的文献求助10
10秒前
goodgoodstudy发布了新的文献求助10
10秒前
10秒前
huifang完成签到,获得积分10
10秒前
yan儿完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762