清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning models are superior to noninvasive tests in identifying clinically significant stages of NAFLD and NAFLD‐related cirrhosis

医学 肝硬化 纤维化 内科学 胃肠病学 肝纤维化 肝活检 接收机工作特性 逻辑回归 活检
作者
Devon Chang,Emily Truong,Edward Mena,Fabiana Pacheco,Micaela Wong,Maha Guindi,Tsuyoshi Todo,Nabil Noureddin,Walid S. Ayoub,Ju Dong Yang,Irene Kim,Anita Kohli,Naim Alkhouri,Stephen A. Harrison,Mazen Noureddin
出处
期刊:Hepatology [Wiley]
卷期号:77 (2): 546-557 被引量:25
标识
DOI:10.1002/hep.32655
摘要

Background and Aims: We assessed the performance of machine learning (ML) models in identifying clinically significant NAFLD‐associated liver fibrosis and cirrhosis. Approach and Results: We implemented ML models including logistic regression (LR), random forest (RF), and artificial neural network to predict histological stages of fibrosis using 17 demographic/clinical features in 1370 patients with NAFLD who underwent liver biopsy, FibroScan, and labs within a 6‐month period at multiple U.S. centers. Histological stages of fibrosis (≥F2, ≥F3, and F4) were predicted using ML, FibroScan liver stiffness measurements, and Fibrosis‐4 index (FIB‐4). NASH with significant fibrosis (NAS ≥ 4 + ≥F2) was assessed using ML, FibroScan‐AST (FAST) score, FIB‐4, and NAFLD fibrosis score (NFS). We used 80% of the cohort to train and 20% to test the ML models. For ≥F2, ≥F3, F4, and NASH + NAS ≥ 4 + ≥F2, all ML models, especially RF, had primarily higher accuracy and AUC compared with FibroScan, FIB‐4, FAST, and NFS. AUC for RF versus FibroScan and FIB‐4 for ≥F2, ≥F3, and F4 were (0.86 vs. 0.81, 0.78), (0.89 vs. 0.83, 0.82), and (0.89 vs. 0.86, 0.85), respectively. AUC for RF versus FAST, FIB‐4, and NFS for NASH + NAS ≥ 4 + ≥F2 were (0.80 vs. 0.77, 0.66, 0.63). For NASH + NAS ≥ 4 + ≥F2, all ML models had lower/similar percentages within the indeterminate zone compared with FIB‐4 and NFS. Overall, ML models performed better in sensitivity, specificity, positive predictive value, and negative predictive value compared with traditional noninvasive tests. Conclusions: ML models performed better overall than FibroScan, FIB‐4, FAST, and NFS. ML could be an effective tool for identifying clinically significant liver fibrosis and cirrhosis in patients with NAFLD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
21秒前
41秒前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
冬去春来完成签到 ,获得积分10
2分钟前
Jasper应助枯藤老柳树采纳,获得30
2分钟前
酷波er应助帮帮我好吗采纳,获得10
2分钟前
3分钟前
3分钟前
科研通AI2S应助白华苍松采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
zhouleiwang发布了新的文献求助10
4分钟前
poki完成签到 ,获得积分10
4分钟前
4分钟前
OCDer发布了新的文献求助10
5分钟前
清爽玉米完成签到,获得积分10
5分钟前
FashionBoy应助科研通管家采纳,获得10
6分钟前
皮老师发布了新的文献求助200
7分钟前
合不着完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
风起枫落完成签到 ,获得积分10
8分钟前
8分钟前
科研一枝花完成签到 ,获得积分10
8分钟前
8分钟前
皮老师完成签到,获得积分10
8分钟前
wanci应助帮帮我好吗采纳,获得10
9分钟前
10分钟前
10分钟前
Lucas应助Scrat采纳,获得10
10分钟前
Olivia发布了新的文献求助30
10分钟前
11分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787992
关于积分的说明 7784214
捐赠科研通 2444073
什么是DOI,文献DOI怎么找? 1299719
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600997