Machine learning models are superior to noninvasive tests in identifying clinically significant stages of NAFLD and NAFLD‐related cirrhosis

医学 肝硬化 纤维化 内科学 胃肠病学 肝纤维化 肝活检 接收机工作特性 逻辑回归 活检
作者
Devon Chang,Emily Truong,Edward Mena,Fabiana Pacheco,Micaela Wong,Maha Guindi,Tsuyoshi Todo,Nabil Noureddin,Walid S. Ayoub,Ju Dong Yang,Irene Kim,Anita Kohli,Naim Alkhouri,Stephen A. Harrison,Mazen Noureddin
出处
期刊:Hepatology [Lippincott Williams & Wilkins]
卷期号:77 (2): 546-557 被引量:41
标识
DOI:10.1002/hep.32655
摘要

We assessed the performance of machine learning (ML) models in identifying clinically significant NAFLD-associated liver fibrosis and cirrhosis.We implemented ML models including logistic regression (LR), random forest (RF), and artificial neural network to predict histological stages of fibrosis using 17 demographic/clinical features in 1370 patients with NAFLD who underwent liver biopsy, FibroScan, and labs within a 6-month period at multiple U.S. centers. Histological stages of fibrosis (≥F2, ≥F3, and F4) were predicted using ML, FibroScan liver stiffness measurements, and Fibrosis-4 index (FIB-4). NASH with significant fibrosis (NAS ≥ 4 + ≥F2) was assessed using ML, FibroScan-AST (FAST) score, FIB-4, and NAFLD fibrosis score (NFS). We used 80% of the cohort to train and 20% to test the ML models. For ≥F2, ≥F3, F4, and NASH + NAS ≥ 4 + ≥F2, all ML models, especially RF, had primarily higher accuracy and AUC compared with FibroScan, FIB-4, FAST, and NFS. AUC for RF versus FibroScan and FIB-4 for ≥F2, ≥F3, and F4 were (0.86 vs. 0.81, 0.78), (0.89 vs. 0.83, 0.82), and (0.89 vs. 0.86, 0.85), respectively. AUC for RF versus FAST, FIB-4, and NFS for NASH + NAS ≥ 4 + ≥F2 were (0.80 vs. 0.77, 0.66, 0.63). For NASH + NAS ≥ 4 + ≥F2, all ML models had lower/similar percentages within the indeterminate zone compared with FIB-4 and NFS. Overall, ML models performed better in sensitivity, specificity, positive predictive value, and negative predictive value compared with traditional noninvasive tests.ML models performed better overall than FibroScan, FIB-4, FAST, and NFS. ML could be an effective tool for identifying clinically significant liver fibrosis and cirrhosis in patients with NAFLD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
ED应助沉默的金鱼采纳,获得10
3秒前
4秒前
6秒前
8秒前
8秒前
小菜鸡发布了新的文献求助10
9秒前
9秒前
9秒前
连难胜完成签到,获得积分10
10秒前
研友_ZAxKMn发布了新的文献求助10
12秒前
Starry完成签到,获得积分10
13秒前
surina发布了新的文献求助10
13秒前
魏凡之发布了新的文献求助10
13秒前
巫青丝完成签到,获得积分10
14秒前
17秒前
核桃应助研友_ZAxKMn采纳,获得10
17秒前
小菜鸡完成签到,获得积分20
17秒前
虚心的宛亦完成签到,获得积分10
17秒前
18秒前
ding应助沉默凡梦采纳,获得10
18秒前
19秒前
SigRosa发布了新的文献求助10
20秒前
ttb发布了新的文献求助10
20秒前
活泼万言完成签到,获得积分10
22秒前
23秒前
想吃小面包完成签到 ,获得积分10
24秒前
好啦啦发布了新的文献求助10
25秒前
所所应助活力遥采纳,获得10
26秒前
内向翰完成签到,获得积分10
27秒前
别当真完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
29秒前
29秒前
小艾冂学给Soey的求助进行了留言
29秒前
SigRosa完成签到,获得积分10
30秒前
hehe发布了新的文献求助10
31秒前
Merlin应助陈三三采纳,获得30
31秒前
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958087
求助须知:如何正确求助?哪些是违规求助? 3504271
关于积分的说明 11117667
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788396
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802541