A web server for identifying circRNA-RBP variable-length binding sites based on stacked generalization ensemble deep learning network

一般化 计算机科学 人工智能 集成学习 深度学习 结合位点 序列(生物学) Web服务器 序列母题 计算生物学 机器学习 理论计算机科学 生物 数学 互联网 遗传学 万维网 数学分析 DNA
作者
Zhengfeng Wang,Xiujuan Lei
出处
期刊:Methods [Elsevier BV]
卷期号:205: 179-190 被引量:7
标识
DOI:10.1016/j.ymeth.2022.06.014
摘要

Circular RNA (circRNA) can exert biological functions by interacting with RNA-binding protein (RBP), and some deep learning-based methods have been developed to predict RBP binding sites on circRNA. However, most of these methods identify circRNA-RBP binding sites are only based on single data resource and cannot provide exact binding sites, only providing the probability value of a sequence fragment. To solve these problems, we propose a binding sites localization algorithm that fuses binding sites from multiple databases, and further design a stacked generalization ensemble deep learning model named CirRBP to identify RBP binding sites on circRNA. The CirRBP is trained by combining the binding sites from multiple databases and makes predictions by weighted aggregating the predictions of each sub-model. The results show that the CirRBP outperforms any sub-model and existing online prediction model. For better access to our research results, we develop an open-source web application called CRWS (CircRNA-RBP Web Server). Its back-end learning model of the CRWS is a stacked generalization ensemble learning model CirRBP based on different deep learning frameworks. Given a full-length circRNA or fragment sequence and a target RBP, the CRWS can analyze and provide the exact potential binding sites of the target RBP on the given sequence through the binding sites localization algorithm, and visualize it. In addition, the CRWS can discover the most widely distributed motif in each RBP dataset. Up to now, CRWS is the first significant online tool that uses multi-source data to train models and predict exact binding sites. CRWS is now publicly and freely available without login requirement at: http://www.bioinformatics.team.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
everyone_woo发布了新的文献求助10
刚刚
yznfly应助冷酷仙境的羊男采纳,获得30
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
饮一杯为谁丶完成签到,获得积分10
1秒前
Alex应助科研通管家采纳,获得10
1秒前
Alex应助科研通管家采纳,获得20
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得30
2秒前
laryc完成签到,获得积分10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
2秒前
华仔应助科研通管家采纳,获得50
2秒前
FashionBoy应助科研通管家采纳,获得30
2秒前
考拉完成签到 ,获得积分10
2秒前
Alex应助科研通管家采纳,获得20
2秒前
阿尔图完成签到,获得积分10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
ddd应助科研通管家采纳,获得100
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
3秒前
he完成签到 ,获得积分10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
Jasper应助虚幻小丸子采纳,获得10
3秒前
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
3秒前
zxy应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
欣慰小丸子应助lhh采纳,获得10
4秒前
HCl完成签到,获得积分10
4秒前
开水发布了新的文献求助30
4秒前
灿烂千阳完成签到,获得积分10
5秒前
有你就足够完成签到,获得积分10
6秒前
啊标完成签到,获得积分10
6秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960532
求助须知:如何正确求助?哪些是违规求助? 3506818
关于积分的说明 11132262
捐赠科研通 3239114
什么是DOI,文献DOI怎么找? 1789985
邀请新用户注册赠送积分活动 872079
科研通“疑难数据库(出版商)”最低求助积分说明 803128