材料科学
结晶
结晶度
乳酸
耐热性
聚酯纤维
聚合物
复合材料
化学工程
遗传学
生物
工程类
细菌
作者
Xipo Zhao,Jinchao Liu,Juncheng Li,Xinyu Liang,Weiyi Zhou,Shaoxian Peng
标识
DOI:10.1016/j.ijbiomac.2022.07.091
摘要
Poly(lactic acid) (PLA) has attracted much attention as a substitute for petroleum-based plastics, but its low heat resistance limits its application range in packaging fields and disposable products. This paper summarizes the structural factors affecting the heat resistance of PLA and systematically summarizes methods to improve its heat resistance. PLA is a semi-crystalline polymer, and crystallinity, crystal size, and other factors are important factors affecting heat resistance. This paper systematically analyzes the means to control the crystallization behavior of PLA, and summarizes the effects of nucleating agents, cross-linking, grafting, and annealing processes on the crystallization behavior and heat resistance of PLA. The effects of PLA molecular chain cross-linking and grafting on the motility of PLA molecular chains and the heat resistance of PLA materials are further discussed from the perspective of PLA molecular chain segment movement. The research work on combining PLA with reinforcements such as high heat-resistant polymer materials, fiber, and nanoparticles to improve the mechanical properties and heat resistance of PLA by introducing rigid groups or structures is described in detail. Improving the heat resistance of PLA material is an important strategy to promote the application of biodegradable materials, and has broad research value and application prospects.
科研通智能强力驱动
Strongly Powered by AbleSci AI