A Stacked Memristive Device Enabling Both Analog and Threshold Switching Behaviors for Artificial Leaky Integrate and Fire Neuron

神经形态工程学 记忆电阻器 仿真 尖峰神经网络 计算机科学 人工神经网络 电子工程 材料科学 人工智能 工程类 经济增长 经济
作者
Jingyao Bian,Ye Tao,Zhongqiang Wang,Xiaohan Zhang,Xiaoning Zhao,Ya Lin,Haiyang Xu,Yichun Liu
出处
期刊:IEEE Electron Device Letters [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 1436-1439 被引量:9
标识
DOI:10.1109/led.2022.3188786
摘要

Leaky integrate and fire (LIF) neurons are critical units for constructing a spiking neural network, in which neurons communicate with each other using spikes via synapses. Memristors, due to its specific nonlinear characteristics, are frequently introduced to emulate partial functions of LIF neurons for simplifying the circuit complexity, either the integration process or the fire action. Usually, a relatively complicated peripheral circuit needs to be engineered to assist the memristive device for complete emulation for biological neurons, which certainly would hinder the integration potential. Herein, we fabricated a stacked memristive device possessing both analog and threshold switching behaviors for constructing an artificial LIF neuron. Thus, the integration and fire functions were both accomplished within this single nanoscale device. In addition, the key neuronic functional of a biological neuron, including all-or-nothing spiking, threshold spiking, a refractory period, and strength-modulated frequency response were all successfully mimicked. The results demonstrate that the fabricated stacked memristor-based LIF neurons have great potential to construct high-density spiking neural network for neuromorphic computing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jun完成签到,获得积分20
刚刚
czcmh应助朱祥龙采纳,获得50
刚刚
花花发布了新的文献求助10
1秒前
Abracadabra发布了新的文献求助10
1秒前
张大大完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
Northtime发布了新的文献求助30
2秒前
狂野书文完成签到,获得积分10
2秒前
2秒前
3秒前
三玖发布了新的文献求助10
3秒前
英俊的铭应助12334采纳,获得10
3秒前
3秒前
3秒前
3秒前
4秒前
HUYAOWEI发布了新的文献求助10
4秒前
天天快乐应助Chara_kara采纳,获得10
4秒前
恶魔小艾发布了新的文献求助10
4秒前
小y要读书完成签到,获得积分10
5秒前
申锴发布了新的文献求助10
6秒前
6秒前
科研通AI6应助www采纳,获得10
6秒前
汉堡包应助wzh采纳,获得10
6秒前
表示肯定的羊完成签到,获得积分20
6秒前
awen完成签到,获得积分10
7秒前
善学以致用应助冷酷严青采纳,获得10
7秒前
852应助冷酷严青采纳,获得10
7秒前
7秒前
爆米花应助柒八染采纳,获得10
7秒前
卡皮巴拉完成签到,获得积分10
7秒前
bkagyin应助开心人达采纳,获得10
7秒前
科研通AI6应助争取少吃点采纳,获得10
7秒前
chen发布了新的文献求助10
7秒前
研友_LJaro8发布了新的文献求助20
8秒前
8秒前
情怀应助忧心的山槐采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647530
求助须知:如何正确求助?哪些是违规求助? 4773705
关于积分的说明 15039847
捐赠科研通 4806303
什么是DOI,文献DOI怎么找? 2570208
邀请新用户注册赠送积分活动 1527046
关于科研通互助平台的介绍 1486132