A Stacked Memristive Device Enabling Both Analog and Threshold Switching Behaviors for Artificial Leaky Integrate and Fire Neuron

神经形态工程学 记忆电阻器 仿真 尖峰神经网络 计算机科学 人工神经网络 电子工程 材料科学 人工智能 工程类 经济增长 经济
作者
Jingyao Bian,Ye Tao,Zhongqiang Wang,Xiaohan Zhang,Xiaoning Zhao,Ya Lin,Haiyang Xu,Yichun Liu
出处
期刊:IEEE Electron Device Letters [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 1436-1439 被引量:9
标识
DOI:10.1109/led.2022.3188786
摘要

Leaky integrate and fire (LIF) neurons are critical units for constructing a spiking neural network, in which neurons communicate with each other using spikes via synapses. Memristors, due to its specific nonlinear characteristics, are frequently introduced to emulate partial functions of LIF neurons for simplifying the circuit complexity, either the integration process or the fire action. Usually, a relatively complicated peripheral circuit needs to be engineered to assist the memristive device for complete emulation for biological neurons, which certainly would hinder the integration potential. Herein, we fabricated a stacked memristive device possessing both analog and threshold switching behaviors for constructing an artificial LIF neuron. Thus, the integration and fire functions were both accomplished within this single nanoscale device. In addition, the key neuronic functional of a biological neuron, including all-or-nothing spiking, threshold spiking, a refractory period, and strength-modulated frequency response were all successfully mimicked. The results demonstrate that the fabricated stacked memristor-based LIF neurons have great potential to construct high-density spiking neural network for neuromorphic computing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助F光采纳,获得10
刚刚
天天快乐应助子辰采纳,获得10
刚刚
宋有容发布了新的文献求助10
1秒前
1秒前
1秒前
feilei发布了新的文献求助10
1秒前
顾矜应助魁梧的如波采纳,获得10
2秒前
小张呢好发布了新的文献求助10
2秒前
3秒前
Jasper应助药药55采纳,获得10
4秒前
4秒前
荀连虎完成签到 ,获得积分10
4秒前
4秒前
科研通AI6应助研友_LaOJNZ采纳,获得10
4秒前
尹秀兵发布了新的文献求助10
4秒前
卢西完成签到,获得积分10
5秒前
会鹅鹅鹅的鹅完成签到,获得积分10
5秒前
自然的衫发布了新的文献求助80
5秒前
6秒前
7秒前
Lucas应助小魏采纳,获得10
7秒前
衡阳雁完成签到,获得积分10
7秒前
ding应助孤独的蚂蚁采纳,获得10
7秒前
新嘟发布了新的文献求助10
7秒前
李爱国应助陈杨乐采纳,获得10
8秒前
8秒前
8秒前
Hzz完成签到,获得积分10
9秒前
希望天下0贩的0应助wzc采纳,获得10
9秒前
无极微光应助YJY采纳,获得20
10秒前
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
itharmony应助默问采纳,获得10
11秒前
陈陈陈皮完成签到,获得积分10
11秒前
飞舞的青鱼完成签到,获得积分10
11秒前
英俊的铭应助平淡映易采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618939
求助须知:如何正确求助?哪些是违规求助? 4703867
关于积分的说明 14924179
捐赠科研通 4758786
什么是DOI,文献DOI怎么找? 2550320
邀请新用户注册赠送积分活动 1513124
关于科研通互助平台的介绍 1474401