A Stacked Memristive Device Enabling Both Analog and Threshold Switching Behaviors for Artificial Leaky Integrate and Fire Neuron

神经形态工程学 记忆电阻器 仿真 尖峰神经网络 计算机科学 人工神经网络 电子工程 材料科学 人工智能 工程类 经济增长 经济
作者
Jingyao Bian,Ye Tao,Zhongqiang Wang,Xiaohan Zhang,Xiaoning Zhao,Ya Lin,Haiyang Xu,Yichun Liu
出处
期刊:IEEE Electron Device Letters [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 1436-1439 被引量:9
标识
DOI:10.1109/led.2022.3188786
摘要

Leaky integrate and fire (LIF) neurons are critical units for constructing a spiking neural network, in which neurons communicate with each other using spikes via synapses. Memristors, due to its specific nonlinear characteristics, are frequently introduced to emulate partial functions of LIF neurons for simplifying the circuit complexity, either the integration process or the fire action. Usually, a relatively complicated peripheral circuit needs to be engineered to assist the memristive device for complete emulation for biological neurons, which certainly would hinder the integration potential. Herein, we fabricated a stacked memristive device possessing both analog and threshold switching behaviors for constructing an artificial LIF neuron. Thus, the integration and fire functions were both accomplished within this single nanoscale device. In addition, the key neuronic functional of a biological neuron, including all-or-nothing spiking, threshold spiking, a refractory period, and strength-modulated frequency response were all successfully mimicked. The results demonstrate that the fabricated stacked memristor-based LIF neurons have great potential to construct high-density spiking neural network for neuromorphic computing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lu完成签到,获得积分10
1秒前
开心米粉发布了新的文献求助10
1秒前
天天快乐应助RO采纳,获得10
1秒前
小蘑菇应助1111111采纳,获得10
1秒前
CodeCraft应助1111111采纳,获得10
1秒前
黄伟凯完成签到,获得积分20
1秒前
张军完成签到,获得积分10
1秒前
2秒前
2秒前
sammy66发布了新的文献求助10
2秒前
嘿嘿发布了新的文献求助10
3秒前
明理的满天完成签到,获得积分10
3秒前
qxqy6678发布了新的文献求助10
3秒前
天天快乐应助荻野千寻采纳,获得10
3秒前
黄伟凯发布了新的文献求助10
4秒前
研友_VZG7GZ应助HMUBIN采纳,获得10
4秒前
5秒前
无奈冬寒发布了新的文献求助10
5秒前
manyi1972发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
7秒前
文具盒完成签到,获得积分10
7秒前
7秒前
7秒前
舒心冷珍发布了新的文献求助10
7秒前
852应助杜若采纳,获得10
7秒前
7秒前
蔚蓝绽放发布了新的文献求助20
7秒前
张军发布了新的文献求助20
8秒前
晓汐完成签到,获得积分20
8秒前
潮汐发布了新的文献求助10
8秒前
小小鹤鹤发布了新的文献求助10
8秒前
Ava应助蒹葭苍苍采纳,获得30
9秒前
英姑应助朴若琛采纳,获得10
9秒前
子车茗应助怕黑墨镜采纳,获得30
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711035
求助须知:如何正确求助?哪些是违规求助? 5202070
关于积分的说明 15263091
捐赠科研通 4863454
什么是DOI,文献DOI怎么找? 2610771
邀请新用户注册赠送积分活动 1561017
关于科研通互助平台的介绍 1518534