亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new method based on a WOA-optimized support vector machine to predict the tool wear

刀具磨损 支持向量机 机械加工 粒子群优化 时域 机床 理论(学习稳定性) 计算机科学 刀具 一般化 相关系数 振动 人工智能 模式识别(心理学) 工程类 算法 机器学习 机械工程 数学 数学分析 物理 量子力学 计算机视觉
作者
Yaonan Cheng,Xiaoyu Gai,Yingbo Jin,Rui Guan,Mengda Lu,Ya Ding
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:121 (9-10): 6439-6452 被引量:10
标识
DOI:10.1007/s00170-022-09746-4
摘要

Tool wear has been a great impact on machining quality and machining efficiency during cutting. The serious tool wear will even lead to workpiece failure and catastrophic equipment failure. Accurate and effective tool wear monitoring is important to evaluate the degree of tool wear, replace tools in time, and promote the intelligent development of the manufacturing industry. To improve the accuracy of online prediction of tool wear, a new method based on whale optimization algorithm (WOA) optimized support vector machine (SVM) is proposed to predict the tool wear. Specifically, the multi-domain features of cutting force and vibration signals are extracted based on the time domain, frequency domain, and time–frequency domain, and the signal sensitive features closely related to tool wear are selected by the Pearson correlation coefficient method. SVM is applied to predict the evolution of tool wear. WOA is used to improve prediction accuracy by optimizing the internal parameters of SVM. By learning the nonlinear correlation between sensitive features and tool wear, a model for predicting tool wear based on WOA-SVM is constructed to predict the change of tool wear value. The effectiveness and prediction performance of the proposed method are verified by milling experiments. Results show that this method can predict tool wear value based on limited historical data information accurately and effectively. Compared with SVM prediction methods optimized by some common optimization algorithms (particle swarm optimization (PSO) and genetic algorithm (GA)), the prediction accuracy and stability are higher and the generalization is stronger. These findings may be of great significance for the improvement of machining quality and efficiency of parts, the stable operation of manufacturing system, and the intelligent development of manufacturing industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
chimmy发布了新的文献求助10
9秒前
Moonlight完成签到 ,获得积分10
16秒前
筑梦之鱼完成签到,获得积分10
18秒前
小二郎应助时空星客采纳,获得10
29秒前
自觉凌蝶完成签到 ,获得积分10
31秒前
短巷完成签到 ,获得积分0
40秒前
科研通AI6.2应助知白采纳,获得10
41秒前
十一完成签到 ,获得积分10
45秒前
一叶知秋完成签到,获得积分10
52秒前
省级中药饮片完成签到 ,获得积分10
1分钟前
Everything完成签到,获得积分10
1分钟前
Jasper应助时空星客采纳,获得10
1分钟前
哈哈哈完成签到,获得积分10
1分钟前
1分钟前
1分钟前
zyzraylene发布了新的文献求助30
1分钟前
cornerstone_发布了新的文献求助10
1分钟前
冰西瓜完成签到 ,获得积分0
1分钟前
sfwrbh发布了新的文献求助10
1分钟前
顾矜应助刻苦不弱采纳,获得10
2分钟前
兜兜完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
刻苦不弱完成签到,获得积分10
2分钟前
善逸发布了新的文献求助10
2分钟前
刻苦不弱发布了新的文献求助10
2分钟前
善逸完成签到,获得积分10
2分钟前
2分钟前
Weining发布了新的文献求助10
2分钟前
小鱼完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
cornerstone_完成签到 ,获得积分10
3分钟前
互助给彼岸花开的求助进行了留言
3分钟前
zyzraylene完成签到,获得积分10
3分钟前
在水一方应助rx123采纳,获得10
3分钟前
jjyy发布了新的文献求助10
3分钟前
wsj完成签到,获得积分20
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870727
求助须知:如何正确求助?哪些是违规求助? 6466355
关于积分的说明 15664892
捐赠科研通 4986933
什么是DOI,文献DOI怎么找? 2689063
邀请新用户注册赠送积分活动 1631428
关于科研通互助平台的介绍 1589485