An Advanced Composite Membrane for the All-Vanadium Redox Flow Battery

流动电池 储能 材料科学 电池(电) 电解质 化学工程 电极 化学 热力学 工程类 功率(物理) 冶金 物理 物理化学
作者
Maedeh Pahlevaninezhad,Ashutosh Kumar Singh,Thomas Storwick,Elizabeth Esther Miller,Anne En-Tzu Yang,Majid Pahlevani,Michael A. Pope,Edward P.L. Roberts
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (3): 466-466
标识
DOI:10.1149/ma2022-013466mtgabs
摘要

Redox flow batteries (RFBs) are a promising technology for grid scale stationary energy storage to complement renewable energy systems. These batteries have a relatively low energy density; however, they offer important advantages, including: long life-time; decoupled energy (arbitrarily large electrolyte volume) and power (electrode area); high round-trip efficiency; scalability and design flexibility; fast response; and low environmental impacts. These advantages make them superior to many energy storage technologies for stationary applications [1-4]. Among the various types of RFBs, vanadium RFBs (VRFBs) are an emerging technology for grid scale energy storage and the integration of renewable energy generation [5]. The membrane is a key component of a VRFB that separates the two half-cell electrolytes and prevents cross-mixing, while allowing the transport of ions during charge-discharge cycles [6]. The VRFB membrane should exhibit low vanadium ion permeability to minimize self-discharge, low cost, and long‐term chemical stability under normal operating conditions. A high proton conductivity and low vanadium ion crossover are known to improve the efficiency of VRFBs [6-7]. In this study, we present a novel composite Nafion based membrane that results in a significant increase in the VRFB performance. The composite membrane has been characterized for its chemical, structural, and thermal properties using appropriate analytical techniques. The battery performance was evaluated in a flow cell using a ‘zero-gap’ design with an electrode area of 5 cm 2 . The electrolytic solution, 1.6 M VOSO 4 in 3 M H 2 SO 4 , was circulated through the cell. Thermally treated carbon papers were used as the cathode and anode electrodes. For charge-discharge experiments, a constant current density (10 to 80 mA cm −2 ) was applied with upper and lower voltage cut-offs of 1.65 and 0.8 V, respectively. The stability of the battery using the composite membrane was evaluated over 100 cycles. Figures 1 and 2 show the energy efficiency and capacity retention during 100 charge-discharge cycles. The results reveal that the energy efficiency was improved from 51% to 63% by using the composite membrane. In addition, the charge-discharge capacity and capacity retention improved by around 200% and 25%, respectively. This improvement can be attributed to a higher proton conductivity and lower vanadium permeability of the composite membrane. References: [1] M. Skyllas-Kazacos, L. Cao, M. Kazacos, N. Kausar, A. Mousa, Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review, ChemSusChem. 9 (2016) 1521–1543. [2] A.K. Singh, M. Pahlevaninezhad, N. Yasri, E. Roberts, Degradation of Carbon Electrodes in the All-Vanadium Redox Flow Battery, ChemSusChem. (2021). [3] K.E. Rodby, T.J. Carney, Y. Ashraf Gandomi, J.L. Barton, R.M. Darling, F.R. Brushett, Assessing the levelized cost of vanadium redox flow batteries with capacity fade and rebalancing, J. Power Sources. 460 (2020) 227958. [4] M. Pahlevaninezhad, P. Leung, M. Pahlevani, F. C. Walsh, C. Ponce de Leon, and E. P. L. Roberts, Experimental and Computational Studies of Disperse Blue-1 in Organic Non-Aqueous Redox Flow Batteries, J. Power Sources, Volume 500, 15 July 2021, 229942. [5] X.Z. Yuan, C. Song, A. Platt, N. Zhao, H. Wang, H. Li, K. Fatih, D. Jang, A review of all-vanadium redox flow battery durability: Degradation mechanisms and mitigation strategies, Int. J. Energy Res. (2019). https://doi.org/10.1002/er.4607. [6] X. Li, H. Zhang, Zh. Mai, H. Zhang, I. Vankelecom, Ion exchange membranes for vanadium redox flow battery (VRB) applications, Energy Environ. Sci., 2011, 4, 1147. [7] L. Yu, F. Lin, L. Xua, J. Xi, A recast Nafion/graphene oxide composite membrane for advanced vanadium redox flow batteries, RSC Adv., 2016, 6, 3756. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
星辰大海应助嘿嘿嘿采纳,获得80
2秒前
醉倒站不稳完成签到,获得积分10
2秒前
4秒前
4秒前
研友_Lmbz1n完成签到,获得积分10
5秒前
whoami完成签到,获得积分20
5秒前
彭于晏应助金光闪闪采纳,获得10
6秒前
一蓑烟雨任平生完成签到,获得积分0
6秒前
yayaya完成签到,获得积分10
8秒前
9秒前
赘婿应助Aprilapple采纳,获得10
9秒前
hyd@961227发布了新的文献求助10
9秒前
duxy发布了新的文献求助10
11秒前
12秒前
12秒前
lee发布了新的文献求助10
14秒前
14秒前
andrele发布了新的文献求助30
15秒前
15秒前
16秒前
江子川发布了新的文献求助10
16秒前
16秒前
wangjuan完成签到,获得积分10
16秒前
17秒前
RED发布了新的文献求助10
21秒前
纸鹤完成签到,获得积分10
21秒前
yxdjzwx发布了新的文献求助10
21秒前
W sir发布了新的文献求助10
21秒前
Ava应助duxy采纳,获得10
22秒前
26秒前
27秒前
28秒前
Aprilapple发布了新的文献求助10
30秒前
股价发布了新的文献求助10
31秒前
冷寻非完成签到,获得积分10
32秒前
温暖的弦发布了新的文献求助10
33秒前
Aprilapple完成签到,获得积分10
36秒前
清爽小白菜完成签到,获得积分10
38秒前
贝奇完成签到 ,获得积分20
41秒前
高分求助中
LNG地下式貯槽指針(JGA Guideline-107)(LNG underground storage tank guidelines) 1000
Generalized Linear Mixed Models 第二版 1000
rhetoric, logic and argumentation: a guide to student writers 1000
Asymptotically optimum binary codes with correction for losses of one or two adjacent bits 800
Preparation and Characterization of Five Amino-Modified Hyper-Crosslinked Polymers and Performance Evaluation for Aged Transformer Oil Reclamation 700
Operative Techniques in Pediatric Orthopaedic Surgery 510
Full waveform acoustic data processing 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2926065
求助须知:如何正确求助?哪些是违规求助? 2573684
关于积分的说明 6950600
捐赠科研通 2226412
什么是DOI,文献DOI怎么找? 1183217
版权声明 589129
科研通“疑难数据库(出版商)”最低求助积分说明 579089