Universitetet i Oslo-67 (UiO-67)/graphite oxide composites with high capacities of toluene: Synthesis strategy and adsorption mechanism insight

吸附 热重分析 石墨烯 X射线光电子能谱 傅里叶变换红外光谱 氧化石墨 甲苯 材料科学 化学工程 纳米复合材料 氧化物 解吸 扫描电子显微镜 复合材料 化学 有机化学 纳米技术 冶金 工程类
作者
Qiangyu Zhao,Zhenyuan Zhao,Renzhi Rao,Yang Yang,Songyuan Ling,Fukun Bi,Xiaoyu Shi,Jingcheng Xu,Guang Lü,Xiaodong Zhang
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:627: 385-397 被引量:99
标识
DOI:10.1016/j.jcis.2022.07.059
摘要

In this paper, a simple solvothermal synthesis method was proposed for the preparation of metal organic framework/graphene oxide hybrid nanocomposite (UiO-67/GO). A series of UiO-67/GO composites were prepared by varying the addition forms and amounts of GO, and the optimal synthesis conditions were screened. The composites were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission Electron Microscope (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopic (XPS), water contact angles (CA) and thermogravimetric analysis (TGA). The adsorption capacity and the adsorption process of toluene were investigated by dynamic adsorption and adsorption kinetics, respectively. The results indicated that 67/GO-0.5% reached the maximum adsorption capacity (876 mg g-1), which far exceeded the other adsorbents. Kinetic model and the Weber-Morris model correlated satisfactorily to the experimental data. The improved adsorption performance was attributed to GO, which enhanced π-π interaction, promoted defect generation and provided more adsorption sites. Finally, the excellent regeneration performance of the adsorbent was verified by temperature programmed desorption (TPD) and cyclic adsorption-desorption experiments. Moreover, the adsorption mechanism was further revealed. Combined with the related adsorption experiments and the density functional theory (DFT) analysis, the efficient removal of toluene by UiO-67/GO was attributed to the cooperation of defects, π-π interaction and hydrogen bonding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助孙奕采纳,获得10
刚刚
刚刚
HYH发布了新的文献求助20
刚刚
Rinohalt发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
2秒前
领导范儿应助通~采纳,获得10
2秒前
2秒前
fufufu123发布了新的文献求助10
2秒前
英姑应助猪猪hero采纳,获得10
2秒前
励志小薛发布了新的文献求助10
3秒前
怕孤独的从雪完成签到,获得积分20
3秒前
3秒前
joyce完成签到,获得积分10
3秒前
4秒前
xiaotian_fan发布了新的文献求助10
5秒前
sunlihao完成签到,获得积分10
5秒前
123发布了新的文献求助10
6秒前
悦耳水之发布了新的文献求助10
6秒前
garyaa发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
8秒前
研友_LMNjkn完成签到,获得积分10
10秒前
Liu完成签到,获得积分10
10秒前
10秒前
夏日天空完成签到,获得积分10
11秒前
CodeCraft应助lkc采纳,获得10
11秒前
cheng发布了新的文献求助10
11秒前
Hello应助科研小白菜采纳,获得10
12秒前
Eve发布了新的文献求助10
12秒前
花见月开完成签到,获得积分10
13秒前
思源应助uu采纳,获得10
13秒前
共享精神应助喜悦成威采纳,获得20
14秒前
赵赵赵发布了新的文献求助10
14秒前
打打应助特兰克斯采纳,获得10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794