Universitetet i Oslo-67 (UiO-67)/graphite oxide composites with high capacities of toluene: Synthesis strategy and adsorption mechanism insight

吸附 热重分析 石墨烯 X射线光电子能谱 傅里叶变换红外光谱 氧化石墨 甲苯 材料科学 化学工程 纳米复合材料 氧化物 解吸 扫描电子显微镜 复合材料 化学 有机化学 纳米技术 冶金 工程类
作者
Qiangyu Zhao,Zhenyuan Zhao,Renzhi Rao,Yang Yang,Songyuan Ling,Fukun Bi,Xiaoyu Shi,Jingcheng Xu,Guang Lü,Xiaodong Zhang
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:627: 385-397 被引量:107
标识
DOI:10.1016/j.jcis.2022.07.059
摘要

In this paper, a simple solvothermal synthesis method was proposed for the preparation of metal organic framework/graphene oxide hybrid nanocomposite (UiO-67/GO). A series of UiO-67/GO composites were prepared by varying the addition forms and amounts of GO, and the optimal synthesis conditions were screened. The composites were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission Electron Microscope (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopic (XPS), water contact angles (CA) and thermogravimetric analysis (TGA). The adsorption capacity and the adsorption process of toluene were investigated by dynamic adsorption and adsorption kinetics, respectively. The results indicated that 67/GO-0.5% reached the maximum adsorption capacity (876 mg g-1), which far exceeded the other adsorbents. Kinetic model and the Weber-Morris model correlated satisfactorily to the experimental data. The improved adsorption performance was attributed to GO, which enhanced π-π interaction, promoted defect generation and provided more adsorption sites. Finally, the excellent regeneration performance of the adsorbent was verified by temperature programmed desorption (TPD) and cyclic adsorption-desorption experiments. Moreover, the adsorption mechanism was further revealed. Combined with the related adsorption experiments and the density functional theory (DFT) analysis, the efficient removal of toluene by UiO-67/GO was attributed to the cooperation of defects, π-π interaction and hydrogen bonding.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿修罗发布了新的文献求助30
刚刚
1秒前
2秒前
2秒前
汐风发布了新的文献求助10
3秒前
美好斓发布了新的文献求助30
3秒前
lllll发布了新的文献求助10
3秒前
浪子应助舒服的摇伽采纳,获得10
3秒前
Twbzz完成签到,获得积分20
3秒前
456完成签到,获得积分10
4秒前
852应助Huang采纳,获得10
4秒前
爆米花应助Ryo采纳,获得10
4秒前
4秒前
chen完成签到,获得积分10
5秒前
小瑞发布了新的文献求助10
5秒前
共享精神应助TY采纳,获得10
6秒前
haimianbaobao完成签到 ,获得积分10
6秒前
情怀应助sghsh采纳,获得10
6秒前
科研通AI6应助dongjingbutaire采纳,获得10
6秒前
456发布了新的文献求助10
6秒前
kkk完成签到,获得积分10
6秒前
Cynthia发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
宣千易发布了新的文献求助10
8秒前
柔弱的便当完成签到,获得积分10
8秒前
年轻的问兰完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
彭于晏应助Jasmine采纳,获得10
9秒前
9秒前
Orange应助little_forest采纳,获得10
10秒前
小火孩发布了新的文献求助10
10秒前
大个应助顺利的奇异果采纳,获得10
10秒前
酷波er应助herdwind采纳,获得10
11秒前
11秒前
Lucas应助维洛尼亚采纳,获得10
11秒前
无极微光应助HEANZ采纳,获得20
11秒前
liao应助美好斓采纳,获得10
12秒前
单薄不惜完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210