Prediction Accuracy of Production ADMET Models as a Function of Version: Activity Cliffs Rule

化学空间 数量结构-活动关系 集合(抽象数据类型) 计算机科学 训练集 人工智能 功能(生物学) 均方误差 机器学习 试验装置 数据挖掘 化学 药物发现 数学 统计 生物 进化生物学 程序设计语言 生物化学
作者
Robert P. Sheridan,J. Chris Culberson,Elizabeth Joshi,Matthew Tudor,Prabha Karnachi
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (14): 3275-3280 被引量:15
标识
DOI:10.1021/acs.jcim.2c00699
摘要

As with many other institutions, our company maintains many quantitative structure-activity relationship (QSAR) models of absorption, distribution, metabolism, excretion, and toxicity (ADMET) end points and updates the models regularly. We recently examined version-to-version predictivity for these models over a period of 10 years. In this approach we monitor the goodness of prediction of new molecules relative to the training set of model version V before they are incorporated in the updated model V+1. Using a cell-based permeability assay (Papp) as an example, we illustrate how the QSAR models made from this data are generally predictive and can be utilized to enrich chemical designs and synthesis. Despite the obvious utility of these models, we turned up unexpected behavior in Papp and other ADMET activities for which the explanation is not obvious. One such behavior is that the apparent predictivity of the models as measured by root-mean-square-error can vary greatly from version to version and is sometimes very poor. One intuitively appealing explanation is that the observed activities of the new molecules fall outside the bulk of activities in the training set. Alternatively, one may think that the new molecules are exploring different regions of chemical space than the training set. However, the real explanation has to do with activity cliffs. If the observed activities of the new molecules are different than expected based on similar molecules in the training set, the predictions will be less accurate. This is true for all our ADMET end points.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
婷婷应助feixiang采纳,获得10
刚刚
1秒前
深情安青应助静俏采纳,获得10
2秒前
2秒前
意外的月饼完成签到,获得积分10
3秒前
naranjaaa发布了新的文献求助10
3秒前
4秒前
wenhao发布了新的文献求助10
6秒前
认真迎梦完成签到,获得积分10
6秒前
6秒前
outman完成签到,获得积分10
6秒前
小麻花发布了新的文献求助10
7秒前
tcc发布了新的文献求助10
8秒前
Pf1314完成签到,获得积分10
8秒前
10秒前
隐形曼青应助Str0n采纳,获得10
11秒前
呆萌背包发布了新的文献求助10
11秒前
abc发布了新的文献求助10
13秒前
8R60d8应助naranjaaa采纳,获得10
14秒前
14秒前
15秒前
刺猬完成签到,获得积分10
15秒前
17秒前
充电宝应助abc采纳,获得10
17秒前
鱼咬羊发布了新的文献求助10
18秒前
那就来吧发布了新的文献求助10
20秒前
Hello应助小麻花采纳,获得10
21秒前
ymy123发布了新的文献求助10
21秒前
WZH发布了新的文献求助10
22秒前
peiyy完成签到,获得积分10
25秒前
925完成签到,获得积分10
25秒前
29秒前
32秒前
赘婿应助酷炫灵安采纳,获得10
32秒前
英勇的书瑶完成签到,获得积分20
32秒前
33秒前
奋斗的夜山完成签到 ,获得积分10
33秒前
廖无极完成签到 ,获得积分10
33秒前
Ding-Ding完成签到,获得积分10
34秒前
925完成签到,获得积分10
36秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164337
求助须知:如何正确求助?哪些是违规求助? 2815185
关于积分的说明 7907938
捐赠科研通 2474745
什么是DOI,文献DOI怎么找? 1317642
科研通“疑难数据库(出版商)”最低求助积分说明 631915
版权声明 602234