Prediction Accuracy of Production ADMET Models as a Function of Version: Activity Cliffs Rule

化学空间 数量结构-活动关系 集合(抽象数据类型) 计算机科学 训练集 人工智能 功能(生物学) 均方误差 机器学习 试验装置 数据挖掘 化学 药物发现 数学 统计 生物 进化生物学 程序设计语言 生物化学
作者
Robert P. Sheridan,J. Chris Culberson,Elizabeth Joshi,Matthew Tudor,Prabha Karnachi
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (14): 3275-3280 被引量:15
标识
DOI:10.1021/acs.jcim.2c00699
摘要

As with many other institutions, our company maintains many quantitative structure-activity relationship (QSAR) models of absorption, distribution, metabolism, excretion, and toxicity (ADMET) end points and updates the models regularly. We recently examined version-to-version predictivity for these models over a period of 10 years. In this approach we monitor the goodness of prediction of new molecules relative to the training set of model version V before they are incorporated in the updated model V+1. Using a cell-based permeability assay (Papp) as an example, we illustrate how the QSAR models made from this data are generally predictive and can be utilized to enrich chemical designs and synthesis. Despite the obvious utility of these models, we turned up unexpected behavior in Papp and other ADMET activities for which the explanation is not obvious. One such behavior is that the apparent predictivity of the models as measured by root-mean-square-error can vary greatly from version to version and is sometimes very poor. One intuitively appealing explanation is that the observed activities of the new molecules fall outside the bulk of activities in the training set. Alternatively, one may think that the new molecules are exploring different regions of chemical space than the training set. However, the real explanation has to do with activity cliffs. If the observed activities of the new molecules are different than expected based on similar molecules in the training set, the predictions will be less accurate. This is true for all our ADMET end points.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助无辜洋葱采纳,获得10
1秒前
完美世界应助瘦瘦的背包采纳,获得10
1秒前
小木棉完成签到,获得积分10
1秒前
威武诺言发布了新的文献求助10
1秒前
1秒前
1秒前
wdn0411完成签到,获得积分10
1秒前
zenoalter完成签到,获得积分10
2秒前
受伤幻桃完成签到,获得积分10
2秒前
lh完成签到,获得积分10
2秒前
3秒前
3秒前
怡然的飞珍完成签到,获得积分10
3秒前
Ava应助luuuuuing采纳,获得30
4秒前
高高千筹完成签到,获得积分10
4秒前
Jasper应助哲000采纳,获得10
5秒前
调皮的天真完成签到 ,获得积分10
5秒前
1ssd应助有风采纳,获得10
5秒前
5秒前
奇奇怪怪完成签到,获得积分10
6秒前
TanFT发布了新的文献求助10
6秒前
青鸟飞鱼完成签到,获得积分10
6秒前
吴吴发布了新的文献求助10
7秒前
ShengjuChen完成签到 ,获得积分10
7秒前
7秒前
CipherSage应助标致小伙采纳,获得10
7秒前
科研通AI5应助深爱不疑采纳,获得10
7秒前
艺术家脾气完成签到,获得积分10
8秒前
9秒前
unicornmed发布了新的文献求助10
9秒前
可爱的函函应助茶艺如何采纳,获得10
10秒前
江知之完成签到 ,获得积分0
10秒前
10秒前
12秒前
刻苦问柳发布了新的文献求助10
12秒前
酷酷平卉完成签到 ,获得积分10
12秒前
星辰大海应助吴吴采纳,获得30
12秒前
JTB发布了新的文献求助10
12秒前
BILNQPL发布了新的文献求助10
12秒前
兮遥遥完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762