Prediction Accuracy of Production ADMET Models as a Function of Version: Activity Cliffs Rule

化学空间 数量结构-活动关系 集合(抽象数据类型) 计算机科学 训练集 人工智能 功能(生物学) 均方误差 机器学习 试验装置 数据挖掘 化学 药物发现 数学 统计 生物 进化生物学 程序设计语言 生物化学
作者
Robert P. Sheridan,J. Chris Culberson,Elizabeth Joshi,Matthew Tudor,Prabha Karnachi
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (14): 3275-3280 被引量:15
标识
DOI:10.1021/acs.jcim.2c00699
摘要

As with many other institutions, our company maintains many quantitative structure-activity relationship (QSAR) models of absorption, distribution, metabolism, excretion, and toxicity (ADMET) end points and updates the models regularly. We recently examined version-to-version predictivity for these models over a period of 10 years. In this approach we monitor the goodness of prediction of new molecules relative to the training set of model version V before they are incorporated in the updated model V+1. Using a cell-based permeability assay (Papp) as an example, we illustrate how the QSAR models made from this data are generally predictive and can be utilized to enrich chemical designs and synthesis. Despite the obvious utility of these models, we turned up unexpected behavior in Papp and other ADMET activities for which the explanation is not obvious. One such behavior is that the apparent predictivity of the models as measured by root-mean-square-error can vary greatly from version to version and is sometimes very poor. One intuitively appealing explanation is that the observed activities of the new molecules fall outside the bulk of activities in the training set. Alternatively, one may think that the new molecules are exploring different regions of chemical space than the training set. However, the real explanation has to do with activity cliffs. If the observed activities of the new molecules are different than expected based on similar molecules in the training set, the predictions will be less accurate. This is true for all our ADMET end points.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旅顺口老李完成签到 ,获得积分10
刚刚
Caffery发布了新的文献求助10
1秒前
狄振家发布了新的文献求助10
2秒前
3秒前
淡然的舞仙完成签到,获得积分10
3秒前
善学以致用应助Skyyeats采纳,获得10
4秒前
zhangyu完成签到,获得积分10
5秒前
852应助Lin采纳,获得10
5秒前
余国辉完成签到,获得积分10
6秒前
狂野凌旋关注了科研通微信公众号
7秒前
7秒前
Singularity应助ZZQ采纳,获得10
7秒前
zlk完成签到,获得积分10
9秒前
9秒前
派大星发布了新的文献求助10
10秒前
充电宝应助蜗牛采纳,获得10
10秒前
笔至梦花完成签到 ,获得积分10
10秒前
10秒前
yinshaoyu21完成签到,获得积分10
10秒前
Ava应助狄振家采纳,获得10
12秒前
12秒前
sss关闭了sss文献求助
12秒前
tjzhaoll发布了新的文献求助10
12秒前
12秒前
lalala发布了新的文献求助10
13秒前
clientprogram应助garrick采纳,获得20
14秒前
迷人问兰发布了新的文献求助30
16秒前
16秒前
16秒前
19秒前
lulu828完成签到,获得积分10
19秒前
coc完成签到 ,获得积分10
20秒前
我一定会毕业的完成签到,获得积分10
21秒前
21秒前
CodeCraft应助tjzhaoll采纳,获得10
22秒前
23秒前
24秒前
24秒前
26秒前
所所应助花还是花采纳,获得10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952331
求助须知:如何正确求助?哪些是违规求助? 3497729
关于积分的说明 11088592
捐赠科研通 3228329
什么是DOI,文献DOI怎么找? 1784774
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303