Theoretical and experimental investigations of enhanced uranium(vi) adsorption using a nitrogen doping strategy

吸附 嫁接 氮气 石墨烯 水溶液 氧化物 化学 材料科学 核化学 无机化学 化学工程 纳米技术 有机化学 冶金 工程类 聚合物
作者
Yanqing Guo,Xia Meng,Kexin Shao,Guangming Xu,Wei Cheng,Shang Zhaorong,Hao Peng,Yanguo Teng,Junfeng Dou
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:24 (28): 17163-17173 被引量:4
标识
DOI:10.1039/d2cp01386j
摘要

With the ongoing development and utilization of nuclear energy, uranium pollution has become an increasingly serious issue. Although many adsorbents are able to remove hexavalent uranium (U(VI)) from aqueous solution, the development of a high capacity adsorbent exhibiting superior stability would be beneficial. Grafting poly(amidoxime) (PAO) onto reduced graphene oxide (rGO) provides suitable U(VI) adsorption performance but the PAO is prone to agglomeration. The present work used density functional theory calculations to predict that PAO would bond with pyrrolic N atoms in nitrogen-doped rGO (N-rGO). To confirm this, PAO-grafted rGO (PAO-rGO) and PAO-grafted N-rGO (PAO-N-rGO) were prepared and characterized and the successful grafting of PAO on N-rGO was demonstrated. Adsorption experiments demonstrated that PAO-N-rGO exhibit superb U(VI) adsorption performance compared with the original PAO-rGO under acidic conditions. As for competing metal ions, Cu2+, Al3+, and Ca2+ have a greater impact on U(VI) adsorption than Na+, Mg2+, and K+ both for PAO-rGO and PAO-N-rGO. The maximum adsorption capacities of PAO-rGO and PAO-N-rGO for U(VI) were calculated to be 1500.26 and 1545.95 mg g-1, respectively. The mechanism of nitrogen doping promoting uranium(VI) adsorption can be attributed to enhanced PAO grafting and improvement of adsorption performance of the rGO. This work demonstrates that nitrogen doping is a viable strategy for enhancing the U(VI) adsorption performance of PAO-rGO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33完成签到,获得积分10
刚刚
meo应助叨叨哥采纳,获得10
刚刚
1秒前
1秒前
2秒前
活力晓夏发布了新的文献求助10
2秒前
bluelu发布了新的文献求助10
2秒前
斯文败类应助伯努利采纳,获得10
3秒前
希望天下0贩的0应助jgs采纳,获得10
3秒前
xiaoxiao发布了新的文献求助10
3秒前
3秒前
3秒前
Xiaoyan发布了新的文献求助10
4秒前
111完成签到,获得积分10
4秒前
Yancy应助33采纳,获得10
4秒前
日夜修行发布了新的文献求助10
5秒前
5秒前
Wangyn完成签到,获得积分10
5秒前
单于寒云发布了新的文献求助20
5秒前
5秒前
6秒前
深情秋刀鱼完成签到,获得积分20
6秒前
研友_EZ1GJL发布了新的文献求助20
7秒前
晒太阳完成签到,获得积分20
8秒前
songlf23发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
日常卖命发布了新的文献求助10
11秒前
11秒前
11秒前
活力晓夏完成签到,获得积分10
12秒前
超帅的南霜完成签到,获得积分20
12秒前
LHL发布了新的文献求助50
12秒前
ab完成签到,获得积分10
13秒前
情怀应助ZD采纳,获得10
13秒前
13秒前
谨慎冰薇发布了新的文献求助10
14秒前
14秒前
鹅鹅发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542598
求助须知:如何正确求助?哪些是违规求助? 3119973
关于积分的说明 9341143
捐赠科研通 2818043
什么是DOI,文献DOI怎么找? 1549287
邀请新用户注册赠送积分活动 722093
科研通“疑难数据库(出版商)”最低求助积分说明 712928