Short-term photovoltaic power forecasting based on signal decomposition and machine learning optimization

光伏系统 水准点(测量) 计算机科学 电力系统 粒子群优化 预测建模 群体智能 人工智能 机器学习 功率(物理) 数据挖掘 工程类 地理 大地测量学 物理 电气工程 量子力学
作者
Yilin Zhou,Jianzhou Wang,Zhiwu Li,Haiyan Lu
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:267: 115944-115944 被引量:45
标识
DOI:10.1016/j.enconman.2022.115944
摘要

Owing to the continuous increase in the proportion of solar generation accounting for the total global generation, real-time management of solar power has become indispensable. Moreover, accurate prediction of photovoltaic power is emerging as an important link to support grid operations and reflect real-life scenarios. Various studies have led to the design of several forecasting models. Nevertheless, most predictors do not focus on the effects of the factors of photovoltaic modules on the forecast results. To fill this gap, in this paper, a novel multivariable hybrid prediction system combining signal decomposition, artificial intelligence models, deep learning models, and a swarm intelligence optimization strategy is proposed. This system fully utilizes independent variable features (including the module temperature) to efficiently enhance the precision and efficiency of photovoltaic forecasting. In particular, it is proved that a Pareto-optimal solution can be obtained using the designed system. Using three datasets obtained from Safi-Morocco, the presented system is verified by comparative experiments, and its remarkable advantages in terms of forecasting are demonstrated. Specifically, using the three datasets, the symmetric mean absolute percentage errors obtained by the presented forecast system are 2.129%, 2.335%, and 3.654%, respectively, which are significantly lower than those achieved with other comparison models. Furthermore, a comprehensive and rational evaluation methodology is employed to assess the predictive capability of the developed system. The evaluation results show that the system is effective in improving the forecasting efficiency and outperforms other benchmark models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等你 下课发布了新的文献求助10
刚刚
万钰禄发布了新的文献求助10
刚刚
百里烬言完成签到,获得积分10
刚刚
霸气问凝发布了新的文献求助10
1秒前
1秒前
1秒前
qizhang完成签到,获得积分10
1秒前
搜集达人应助残荷听雨采纳,获得10
1秒前
fjaa发布了新的文献求助10
2秒前
柚子完成签到,获得积分10
2秒前
小夏完成签到,获得积分10
2秒前
2秒前
stella完成签到,获得积分10
2秒前
灰灰12138完成签到,获得积分10
2秒前
安详水儿发布了新的文献求助10
2秒前
SciGPT应助peeer采纳,获得10
2秒前
坚定的若枫完成签到,获得积分10
3秒前
椰子狗完成签到,获得积分10
3秒前
討厭喝水发布了新的文献求助10
3秒前
斯文败类应助Arno采纳,获得10
4秒前
Bai完成签到,获得积分10
4秒前
笑点低紊完成签到,获得积分10
4秒前
执着乐双完成签到,获得积分10
4秒前
娓鸢完成签到,获得积分10
5秒前
ss发布了新的文献求助10
5秒前
科研通AI6应助joe采纳,获得30
5秒前
化学兔八哥完成签到,获得积分10
5秒前
5秒前
怪味薯片发布了新的文献求助10
6秒前
6秒前
完美世界应助搞怪鞅采纳,获得10
6秒前
6秒前
June完成签到 ,获得积分10
7秒前
7秒前
powell发布了新的文献求助10
7秒前
廖嘉俊完成签到 ,获得积分10
7秒前
wanci应助懒懒洋洋洋采纳,获得10
8秒前
现代的东蒽完成签到,获得积分10
8秒前
8秒前
安静破茧发布了新的文献求助10
8秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388179
求助须知:如何正确求助?哪些是违规求助? 4510159
关于积分的说明 14034562
捐赠科研通 4421062
什么是DOI,文献DOI怎么找? 2428561
邀请新用户注册赠送积分活动 1421212
关于科研通互助平台的介绍 1400459