Short-term photovoltaic power forecasting based on signal decomposition and machine learning optimization

光伏系统 水准点(测量) 计算机科学 电力系统 粒子群优化 预测建模 群体智能 人工智能 机器学习 功率(物理) 数据挖掘 工程类 地理 大地测量学 物理 电气工程 量子力学
作者
Yilin Zhou,Jianzhou Wang,Zhiwu Li,Haiyan Lu
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:267: 115944-115944 被引量:45
标识
DOI:10.1016/j.enconman.2022.115944
摘要

Owing to the continuous increase in the proportion of solar generation accounting for the total global generation, real-time management of solar power has become indispensable. Moreover, accurate prediction of photovoltaic power is emerging as an important link to support grid operations and reflect real-life scenarios. Various studies have led to the design of several forecasting models. Nevertheless, most predictors do not focus on the effects of the factors of photovoltaic modules on the forecast results. To fill this gap, in this paper, a novel multivariable hybrid prediction system combining signal decomposition, artificial intelligence models, deep learning models, and a swarm intelligence optimization strategy is proposed. This system fully utilizes independent variable features (including the module temperature) to efficiently enhance the precision and efficiency of photovoltaic forecasting. In particular, it is proved that a Pareto-optimal solution can be obtained using the designed system. Using three datasets obtained from Safi-Morocco, the presented system is verified by comparative experiments, and its remarkable advantages in terms of forecasting are demonstrated. Specifically, using the three datasets, the symmetric mean absolute percentage errors obtained by the presented forecast system are 2.129%, 2.335%, and 3.654%, respectively, which are significantly lower than those achieved with other comparison models. Furthermore, a comprehensive and rational evaluation methodology is employed to assess the predictive capability of the developed system. The evaluation results show that the system is effective in improving the forecasting efficiency and outperforms other benchmark models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
baomingqiu完成签到 ,获得积分10
刚刚
xdc完成签到,获得积分10
1秒前
uncle完成签到,获得积分10
1秒前
花花发布了新的文献求助10
3秒前
王志新完成签到,获得积分10
3秒前
3秒前
江城闲鹤完成签到,获得积分10
3秒前
4秒前
5秒前
无止发布了新的文献求助10
5秒前
dddd完成签到,获得积分10
6秒前
Avie完成签到 ,获得积分10
7秒前
7秒前
几一昂完成签到,获得积分10
7秒前
江城闲鹤发布了新的文献求助10
7秒前
田様应助自由的笑容采纳,获得10
7秒前
哆啦的空间站完成签到,获得积分0
8秒前
曹兰兰发布了新的文献求助10
8秒前
duckspy完成签到 ,获得积分10
9秒前
小坚果发布了新的文献求助10
9秒前
Yuki完成签到,获得积分10
10秒前
Davidjin完成签到,获得积分10
13秒前
13秒前
陈陈完成签到,获得积分10
13秒前
非鱼完成签到,获得积分10
14秒前
科研通AI5应助江城闲鹤采纳,获得10
14秒前
15秒前
四面八方来钱完成签到 ,获得积分10
17秒前
大模型应助典雅的俊驰采纳,获得10
17秒前
111完成签到,获得积分10
18秒前
传奇3应助唐浩采纳,获得10
19秒前
酷波er应助ira采纳,获得10
21秒前
格拉希尔完成签到,获得积分10
21秒前
yongen发布了新的文献求助10
21秒前
22秒前
古夕完成签到,获得积分10
23秒前
李爱国应助曹兰兰采纳,获得10
23秒前
24秒前
默默新波完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044866
求助须知:如何正确求助?哪些是违规求助? 4274363
关于积分的说明 13323824
捐赠科研通 4088132
什么是DOI,文献DOI怎么找? 2236778
邀请新用户注册赠送积分活动 1244134
关于科研通互助平台的介绍 1172157