Short-term photovoltaic power forecasting based on signal decomposition and machine learning optimization

光伏系统 水准点(测量) 计算机科学 电力系统 粒子群优化 预测建模 群体智能 人工智能 机器学习 功率(物理) 数据挖掘 工程类 地理 大地测量学 物理 电气工程 量子力学
作者
Yilin Zhou,Jianzhou Wang,Zhiwu Li,Haiyan Lu
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:267: 115944-115944 被引量:45
标识
DOI:10.1016/j.enconman.2022.115944
摘要

Owing to the continuous increase in the proportion of solar generation accounting for the total global generation, real-time management of solar power has become indispensable. Moreover, accurate prediction of photovoltaic power is emerging as an important link to support grid operations and reflect real-life scenarios. Various studies have led to the design of several forecasting models. Nevertheless, most predictors do not focus on the effects of the factors of photovoltaic modules on the forecast results. To fill this gap, in this paper, a novel multivariable hybrid prediction system combining signal decomposition, artificial intelligence models, deep learning models, and a swarm intelligence optimization strategy is proposed. This system fully utilizes independent variable features (including the module temperature) to efficiently enhance the precision and efficiency of photovoltaic forecasting. In particular, it is proved that a Pareto-optimal solution can be obtained using the designed system. Using three datasets obtained from Safi-Morocco, the presented system is verified by comparative experiments, and its remarkable advantages in terms of forecasting are demonstrated. Specifically, using the three datasets, the symmetric mean absolute percentage errors obtained by the presented forecast system are 2.129%, 2.335%, and 3.654%, respectively, which are significantly lower than those achieved with other comparison models. Furthermore, a comprehensive and rational evaluation methodology is employed to assess the predictive capability of the developed system. The evaluation results show that the system is effective in improving the forecasting efficiency and outperforms other benchmark models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
季文婷发布了新的文献求助10
刚刚
lobster完成签到 ,获得积分10
1秒前
hcy完成签到,获得积分10
1秒前
1秒前
1秒前
旷野发布了新的文献求助10
2秒前
笑呵呵完成签到,获得积分10
2秒前
情怀应助Pupil采纳,获得10
2秒前
桐桐应助Nemo采纳,获得10
3秒前
丘比特应助lalll采纳,获得10
3秒前
FashionBoy应助任性映秋采纳,获得10
4秒前
浮游应助盏盏采纳,获得10
4秒前
5秒前
小蘑菇应助111采纳,获得10
5秒前
沉静高山发布了新的文献求助10
5秒前
dbhfdgsh完成签到,获得积分10
5秒前
bkagyin应助天真小甜瓜采纳,获得10
6秒前
万能图书馆应助lynn采纳,获得10
6秒前
7秒前
上官若男应助小行星采纳,获得20
7秒前
7秒前
浮沉完成签到,获得积分10
7秒前
Avery完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
spisn完成签到,获得积分10
8秒前
Lucas应助邓先生采纳,获得10
9秒前
一万瓶啤酒完成签到,获得积分10
9秒前
10秒前
科研通AI6应助伶俐的夜香采纳,获得10
10秒前
10秒前
DYQin发布了新的文献求助30
10秒前
神内小天使完成签到,获得积分10
11秒前
所所应助modesty采纳,获得10
12秒前
娜娜发布了新的文献求助10
12秒前
白芷苏发布了新的文献求助10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468778
求助须知:如何正确求助?哪些是违规求助? 4572121
关于积分的说明 14333712
捐赠科研通 4498948
什么是DOI,文献DOI怎么找? 2464734
邀请新用户注册赠送积分活动 1453361
关于科研通互助平台的介绍 1427921