Short-term photovoltaic power forecasting based on signal decomposition and machine learning optimization

光伏系统 水准点(测量) 计算机科学 电力系统 粒子群优化 预测建模 群体智能 人工智能 机器学习 功率(物理) 数据挖掘 工程类 地理 大地测量学 物理 电气工程 量子力学
作者
Yilin Zhou,Jianzhou Wang,Zhiwu Li,Haiyan Lu
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:267: 115944-115944 被引量:45
标识
DOI:10.1016/j.enconman.2022.115944
摘要

Owing to the continuous increase in the proportion of solar generation accounting for the total global generation, real-time management of solar power has become indispensable. Moreover, accurate prediction of photovoltaic power is emerging as an important link to support grid operations and reflect real-life scenarios. Various studies have led to the design of several forecasting models. Nevertheless, most predictors do not focus on the effects of the factors of photovoltaic modules on the forecast results. To fill this gap, in this paper, a novel multivariable hybrid prediction system combining signal decomposition, artificial intelligence models, deep learning models, and a swarm intelligence optimization strategy is proposed. This system fully utilizes independent variable features (including the module temperature) to efficiently enhance the precision and efficiency of photovoltaic forecasting. In particular, it is proved that a Pareto-optimal solution can be obtained using the designed system. Using three datasets obtained from Safi-Morocco, the presented system is verified by comparative experiments, and its remarkable advantages in terms of forecasting are demonstrated. Specifically, using the three datasets, the symmetric mean absolute percentage errors obtained by the presented forecast system are 2.129%, 2.335%, and 3.654%, respectively, which are significantly lower than those achieved with other comparison models. Furthermore, a comprehensive and rational evaluation methodology is employed to assess the predictive capability of the developed system. The evaluation results show that the system is effective in improving the forecasting efficiency and outperforms other benchmark models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助杨惠子采纳,获得10
1秒前
罗亚亚完成签到,获得积分10
1秒前
spark完成签到,获得积分20
1秒前
2秒前
萌萌发布了新的文献求助10
2秒前
隐形曼青应助快乐大炮采纳,获得10
2秒前
芝麻球ii发布了新的文献求助10
2秒前
橙子发布了新的文献求助20
2秒前
Akim应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
星辰大海应助123采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
3秒前
菠萝蜜发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
BWZ发布了新的文献求助10
4秒前
lxl1996完成签到,获得积分10
4秒前
Flipped完成签到,获得积分10
4秒前
FFFFFFFFF关注了科研通微信公众号
4秒前
情怀应助坨子采纳,获得10
4秒前
ilooksjw完成签到,获得积分10
4秒前
4秒前
5秒前
努力成为科研大佬完成签到,获得积分10
5秒前
5秒前
Owen应助summer夏采纳,获得10
5秒前
xqxqxqxqxqx完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
ganson完成签到 ,获得积分10
6秒前
7秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009366
求助须知:如何正确求助?哪些是违规求助? 3549232
关于积分的说明 11301348
捐赠科研通 3283689
什么是DOI,文献DOI怎么找? 1810387
邀请新用户注册赠送积分活动 886217
科研通“疑难数据库(出版商)”最低求助积分说明 811301