Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-ion Battery Cathodes

电化学 电解质 电池(电) 阴极 水溶液 材料科学 无机化学 化学工程 化学 冶金 电极 工程类 物理 有机化学 功率(物理) 物理化学 量子力学
作者
Yae Qi,Yongyao Xia
出处
期刊:Acta Physico-chimica Sinica [Acta Physico-Chimica Sinica & University Chemistry Editorial Office, Peking University]
卷期号:: 2205045- 被引量:20
标识
DOI:10.3866/pku.whxb202205045
摘要

Abstract: The ever-worsening world-wide energy crisis and environmental issues are encouraging the development of green and renewable energy. Thus, rechargeable batteries are being developed and employed for energy storage and conversion in various electronic equipment. When compared with metal lithium batteries, aqueous rechargeable batteries have gained significant attention due to their advantages of high safety, low cost, and environmental friendliness. Among the various known rechargeable batteries (Li+, Na+, K+, NH4+, Mg2+, Ca2+, and Al3+), aqueous zinc-ion batteries (ZIBs) are considered as promising energy storage devices because the zinc electrode exhibits high capacity (820 mAh∙g-1) and low potential (-0.76 V vs. Standard hydrogen electrode (SHE)). To date, various ZIBs cathode materials with excellent performance have been developed, such as manganese- and vanadium-based oxides, Prussian blue and its analogues, and organic compounds. Unfortunately, some of these materials, especially manganese- and vanadium-based oxides, suffer from critical structural collapse, dissolution, and cathode/electrolyte interfacial side reactions, which lead to low Coulombic efficiency and poor cycle performance. The poor cycle performance is one of the main obstacles hindering the large-scale application of manganese- and vanadium-based oxides. Therefore, the structural design of cathodes and electrolyte regulation strategies have been extensively investigated to solve these problems and improve electrochemical performance. In comparison, electrolyte regulation is an important and effective strategy for improving the performance of ZIBs cathodes. It is well known that a strong interaction force exists between Zn2+ and H2O, therefore, Zn2+ can coordinate with six H2O molecules to form[Zn(H2O)6]2+ in the dilute aqueous electrolyte, while forming numerous hydrogen bonds between the H2O molecules. The Zn2+-solvation structure and hydrogen bonds can be destructed and restructured by changing the anion, and using highly concentrated electrolyte and/or organic solvent, thereby decreasing the number of H2O molecules in the solvated structure and the activity of free water. Furthermore, additives can change the pH value of the aqueous electrolyte and build a dissolution equilibrium between the cathode and electrolyte. Hence, an appropriate electrolyte regulation strategy can broaden the electrochemical stability window of electrolytes, improve the working potential, suppress the occurrence of interfacial side reactions, and prevent the dissolution of the active materials, thereby improving the electrochemical performance of ZIBs. Herein, we review the possible electrolyte regulation strategies for enhancing the electrochemical performance of ZIBs cathodes and classify regulation strategy into two main categories:1) Solute (including different zinc salts, additive, and water-in-salt) and 2) Solvent (composite of organic/inorganic hybrid electrolytes). We then discuss the advantages and challenges of each strategy, and finally predict the possible future direction of electrolyte development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lili完成签到,获得积分10
刚刚
刻苦的黑米完成签到,获得积分10
刚刚
刚刚
刚刚
炙热忆文发布了新的文献求助10
刚刚
能干的新筠完成签到,获得积分10
1秒前
JXW2024发布了新的文献求助10
2秒前
2秒前
小龙完成签到,获得积分10
2秒前
3秒前
zheng-homes发布了新的文献求助10
3秒前
欢呼香芋完成签到,获得积分10
3秒前
深情安青应助亿点快乐采纳,获得10
4秒前
jessie发布了新的文献求助10
4秒前
乐哉完成签到,获得积分10
4秒前
Yan完成签到,获得积分10
5秒前
邱琳发布了新的文献求助10
5秒前
phj531完成签到,获得积分10
5秒前
小白羊完成签到,获得积分10
5秒前
南攻完成签到,获得积分10
6秒前
万能图书馆应助Benjamin采纳,获得10
8秒前
scugy完成签到,获得积分20
8秒前
VelesAlexei完成签到,获得积分10
8秒前
柠静樨完成签到,获得积分10
8秒前
9秒前
空间广阔发布了新的文献求助30
9秒前
张渔歌完成签到,获得积分10
9秒前
菠菜发布了新的文献求助150
9秒前
量子星尘发布了新的文献求助10
10秒前
ludong_0完成签到,获得积分10
10秒前
DIAPTERA发布了新的文献求助10
10秒前
yuhuzhouye完成签到,获得积分10
10秒前
10秒前
Lucycomplex完成签到,获得积分10
11秒前
炙热忆文完成签到,获得积分10
11秒前
肥奇力完成签到,获得积分10
11秒前
舟遥遥完成签到,获得积分10
11秒前
aurevoir发布了新的文献求助10
12秒前
12秒前
orixero应助小布鲁布鲁采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645234
求助须知:如何正确求助?哪些是违规求助? 4768151
关于积分的说明 15027004
捐赠科研通 4803757
什么是DOI,文献DOI怎么找? 2568448
邀请新用户注册赠送积分活动 1525778
关于科研通互助平台的介绍 1485451