亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-ion Battery Cathodes

电化学 电解质 电池(电) 阴极 水溶液 材料科学 无机化学 化学工程 化学 冶金 电极 工程类 物理 有机化学 功率(物理) 物理化学 量子力学
作者
Yae Qi,Yongyao Xia
出处
期刊:Acta Physico-chimica Sinica [Peking University Press]
卷期号:: 2205045- 被引量:19
标识
DOI:10.3866/pku.whxb202205045
摘要

Abstract: The ever-worsening world-wide energy crisis and environmental issues are encouraging the development of green and renewable energy. Thus, rechargeable batteries are being developed and employed for energy storage and conversion in various electronic equipment. When compared with metal lithium batteries, aqueous rechargeable batteries have gained significant attention due to their advantages of high safety, low cost, and environmental friendliness. Among the various known rechargeable batteries (Li+, Na+, K+, NH4+, Mg2+, Ca2+, and Al3+), aqueous zinc-ion batteries (ZIBs) are considered as promising energy storage devices because the zinc electrode exhibits high capacity (820 mAh∙g-1) and low potential (-0.76 V vs. Standard hydrogen electrode (SHE)). To date, various ZIBs cathode materials with excellent performance have been developed, such as manganese- and vanadium-based oxides, Prussian blue and its analogues, and organic compounds. Unfortunately, some of these materials, especially manganese- and vanadium-based oxides, suffer from critical structural collapse, dissolution, and cathode/electrolyte interfacial side reactions, which lead to low Coulombic efficiency and poor cycle performance. The poor cycle performance is one of the main obstacles hindering the large-scale application of manganese- and vanadium-based oxides. Therefore, the structural design of cathodes and electrolyte regulation strategies have been extensively investigated to solve these problems and improve electrochemical performance. In comparison, electrolyte regulation is an important and effective strategy for improving the performance of ZIBs cathodes. It is well known that a strong interaction force exists between Zn2+ and H2O, therefore, Zn2+ can coordinate with six H2O molecules to form[Zn(H2O)6]2+ in the dilute aqueous electrolyte, while forming numerous hydrogen bonds between the H2O molecules. The Zn2+-solvation structure and hydrogen bonds can be destructed and restructured by changing the anion, and using highly concentrated electrolyte and/or organic solvent, thereby decreasing the number of H2O molecules in the solvated structure and the activity of free water. Furthermore, additives can change the pH value of the aqueous electrolyte and build a dissolution equilibrium between the cathode and electrolyte. Hence, an appropriate electrolyte regulation strategy can broaden the electrochemical stability window of electrolytes, improve the working potential, suppress the occurrence of interfacial side reactions, and prevent the dissolution of the active materials, thereby improving the electrochemical performance of ZIBs. Herein, we review the possible electrolyte regulation strategies for enhancing the electrochemical performance of ZIBs cathodes and classify regulation strategy into two main categories:1) Solute (including different zinc salts, additive, and water-in-salt) and 2) Solvent (composite of organic/inorganic hybrid electrolytes). We then discuss the advantages and challenges of each strategy, and finally predict the possible future direction of electrolyte development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助Wenqi采纳,获得10
28秒前
ww应助自信的雁芙采纳,获得10
34秒前
爱听歌西装完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
寄偶发布了新的文献求助10
1分钟前
正在努力的学术小垃圾完成签到 ,获得积分10
1分钟前
小柯基学从零学起完成签到 ,获得积分10
1分钟前
1分钟前
ddd发布了新的文献求助10
1分钟前
2分钟前
2分钟前
英俊的铭应助加湿器采纳,获得10
2分钟前
伊笙完成签到 ,获得积分0
2分钟前
馆长举报阿浩科研顺利求助涉嫌违规
2分钟前
彩虹儿应助科研通管家采纳,获得10
2分钟前
2分钟前
加湿器发布了新的文献求助10
3分钟前
3分钟前
哆啦的空间站给英勇鞋垫的求助进行了留言
3分钟前
闪闪蜜粉完成签到 ,获得积分10
3分钟前
Vaseegara完成签到 ,获得积分10
3分钟前
3分钟前
所所应助hzr采纳,获得10
3分钟前
4分钟前
卫归尘发布了新的文献求助10
4分钟前
4分钟前
hzr发布了新的文献求助10
4分钟前
卫归尘完成签到,获得积分10
4分钟前
田様应助科研通管家采纳,获得10
4分钟前
miki完成签到,获得积分10
5分钟前
馆长举报lbl234求助涉嫌违规
5分钟前
迷路的幼南完成签到,获得积分10
5分钟前
daguan完成签到,获得积分10
5分钟前
Jasper应助hzr采纳,获得10
5分钟前
金超智完成签到,获得积分10
5分钟前
哆啦的空间站给鬼箭羽的求助进行了留言
5分钟前
5分钟前
fei完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4983563
求助须知:如何正确求助?哪些是违规求助? 4234837
关于积分的说明 13189450
捐赠科研通 4027118
什么是DOI,文献DOI怎么找? 2203036
邀请新用户注册赠送积分活动 1215294
关于科研通互助平台的介绍 1132377