Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-ion Battery Cathodes

电化学 电解质 电池(电) 阴极 水溶液 材料科学 无机化学 化学工程 化学 冶金 电极 工程类 物理 有机化学 功率(物理) 物理化学 量子力学
作者
Yae Qi,Yongyao Xia
出处
期刊:Acta Physico-chimica Sinica [Acta Physico-Chimica Sinica & University Chemistry Editorial Office, Peking University]
卷期号:: 2205045- 被引量:20
标识
DOI:10.3866/pku.whxb202205045
摘要

Abstract: The ever-worsening world-wide energy crisis and environmental issues are encouraging the development of green and renewable energy. Thus, rechargeable batteries are being developed and employed for energy storage and conversion in various electronic equipment. When compared with metal lithium batteries, aqueous rechargeable batteries have gained significant attention due to their advantages of high safety, low cost, and environmental friendliness. Among the various known rechargeable batteries (Li+, Na+, K+, NH4+, Mg2+, Ca2+, and Al3+), aqueous zinc-ion batteries (ZIBs) are considered as promising energy storage devices because the zinc electrode exhibits high capacity (820 mAh∙g-1) and low potential (-0.76 V vs. Standard hydrogen electrode (SHE)). To date, various ZIBs cathode materials with excellent performance have been developed, such as manganese- and vanadium-based oxides, Prussian blue and its analogues, and organic compounds. Unfortunately, some of these materials, especially manganese- and vanadium-based oxides, suffer from critical structural collapse, dissolution, and cathode/electrolyte interfacial side reactions, which lead to low Coulombic efficiency and poor cycle performance. The poor cycle performance is one of the main obstacles hindering the large-scale application of manganese- and vanadium-based oxides. Therefore, the structural design of cathodes and electrolyte regulation strategies have been extensively investigated to solve these problems and improve electrochemical performance. In comparison, electrolyte regulation is an important and effective strategy for improving the performance of ZIBs cathodes. It is well known that a strong interaction force exists between Zn2+ and H2O, therefore, Zn2+ can coordinate with six H2O molecules to form[Zn(H2O)6]2+ in the dilute aqueous electrolyte, while forming numerous hydrogen bonds between the H2O molecules. The Zn2+-solvation structure and hydrogen bonds can be destructed and restructured by changing the anion, and using highly concentrated electrolyte and/or organic solvent, thereby decreasing the number of H2O molecules in the solvated structure and the activity of free water. Furthermore, additives can change the pH value of the aqueous electrolyte and build a dissolution equilibrium between the cathode and electrolyte. Hence, an appropriate electrolyte regulation strategy can broaden the electrochemical stability window of electrolytes, improve the working potential, suppress the occurrence of interfacial side reactions, and prevent the dissolution of the active materials, thereby improving the electrochemical performance of ZIBs. Herein, we review the possible electrolyte regulation strategies for enhancing the electrochemical performance of ZIBs cathodes and classify regulation strategy into two main categories:1) Solute (including different zinc salts, additive, and water-in-salt) and 2) Solvent (composite of organic/inorganic hybrid electrolytes). We then discuss the advantages and challenges of each strategy, and finally predict the possible future direction of electrolyte development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
有人喜欢蓝完成签到,获得积分10
刚刚
荔枝多酚完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
wfy完成签到,获得积分10
4秒前
淡定安波完成签到,获得积分10
5秒前
Wenyu Hu发布了新的文献求助10
7秒前
烟花应助大摸特摸采纳,获得30
7秒前
充电宝应助shanshan采纳,获得10
7秒前
冰汤葫芦发布了新的文献求助10
7秒前
9秒前
情怀应助月圆夜采纳,获得10
12秒前
12秒前
14秒前
14秒前
zxyan完成签到,获得积分10
14秒前
16秒前
adobe发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
111发布了新的文献求助10
16秒前
Zyc发布了新的文献求助10
18秒前
傅姐完成签到 ,获得积分10
18秒前
hjx完成签到,获得积分10
19秒前
XRT发布了新的文献求助10
20秒前
123456完成签到,获得积分10
20秒前
21秒前
23秒前
仙兮熙完成签到 ,获得积分10
24秒前
hellosci666完成签到,获得积分10
24秒前
Auriga完成签到,获得积分10
25秒前
科研通AI6.1应助feisun采纳,获得10
25秒前
26秒前
刘勤杰发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
27秒前
dgft发布了新的文献求助10
28秒前
伊萨卡完成签到 ,获得积分10
28秒前
科研通AI6.1应助慢羊羊采纳,获得10
30秒前
adobe完成签到,获得积分10
30秒前
31秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742484
求助须知:如何正确求助?哪些是违规求助? 5408853
关于积分的说明 15345143
捐赠科研通 4883750
什么是DOI,文献DOI怎么找? 2625301
邀请新用户注册赠送积分活动 1574150
关于科研通互助平台的介绍 1531084