Image Hazing and Dehazing: From the Viewpoint of Two-Way Image Translation With a Weakly Supervised Framework

计算机科学 鉴别器 人工智能 图像翻译 翻译(生物学) 图像(数学) 计算机视觉 任务(项目管理) 模式识别(心理学) 基因 信使核糖核酸 探测器 经济 化学 管理 电信 生物化学
作者
Yunan Li,Huizhou Chen,Qiguang Miao,Daohui Ge,Siyu Liang,Zhuoqi Ma,Bocheng Zhao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 4704-4717 被引量:2
标识
DOI:10.1109/tmm.2022.3181447
摘要

Image dehazing is an important task since it is the prerequisite for many downstream high-level computer vision tasks. Previous dehazing methods depend on either the hand-designed priors/assumptions or supervised learning with plenty of data, which are not easy to implement in practice. Meanwhile, synthesizing hazy images is also significant in many scenes like multi-weather image generation. In this paper, we change the viewpoint of this task to image translation and develop a weakly supervised framework to achieve it. Instead of simply considering the hazy image as the source domain and the haze-free image as the target domain for translation, we design a feature representation scheme that generates a domain indicator, and embed it into the decoder to achieve both hazing and dehazing within one network. This design significantly reduces the complexity of network and can be more easily extended to multi-domain translation tasks than the previous methods, which need one pair of generator-discriminator for each direction of the translation. Meanwhile, aiming at solving the haze-relevant task, we design a haze attention module, which takes the local entropy map as the input. Unlike the previous weakly supervised dehazing methods, our approach only requires unpaired hazy and haze-free images rather than any intermediate supervising data like the transmission map or atmospheric light defined in the atmospheric scattering model. Experimental results on synthetic datasets show our method can achieve competitive results when compared with the state-of-the-art methods and yield more appealing dehazing and hazing results on real-world images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
星辰大海应助好学的猪采纳,获得10
1秒前
梦章完成签到,获得积分10
1秒前
斯文败类应助激昂的不乐采纳,获得10
1秒前
大秦帝国发布了新的文献求助10
2秒前
2秒前
天天完成签到,获得积分20
2秒前
MIDANN完成签到,获得积分20
2秒前
OAO完成签到,获得积分10
2秒前
LY发布了新的文献求助10
3秒前
Kitty完成签到 ,获得积分20
3秒前
neverever完成签到,获得积分10
3秒前
3秒前
半疯半癫完成签到,获得积分20
4秒前
4秒前
4秒前
杨振发布了新的文献求助10
4秒前
5秒前
leisure完成签到,获得积分20
5秒前
小笨猪完成签到,获得积分10
6秒前
务实映之完成签到,获得积分10
6秒前
毛彬完成签到,获得积分20
6秒前
吃零食吃不下饭完成签到,获得积分10
6秒前
芜6完成签到,获得积分10
7秒前
墨扬完成签到,获得积分10
7秒前
应天亦发布了新的文献求助10
7秒前
爆米花应助Helly采纳,获得10
7秒前
鱼乐乐发布了新的文献求助10
8秒前
自由若剑发布了新的文献求助10
8秒前
wanci应助笑点低的不采纳,获得10
8秒前
aladi1011完成签到,获得积分10
8秒前
8秒前
烟酒生应助这个真不懂采纳,获得10
9秒前
ranran发布了新的文献求助10
9秒前
10秒前
peace完成签到,获得积分10
11秒前
田...完成签到,获得积分10
11秒前
11秒前
沄霄之上发布了新的文献求助10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582