Development and Validation of Multiparametric MRI–based Radiomics Models for Preoperative Risk Stratification of Endometrial Cancer

医学 子宫内膜癌 接收机工作特性 列线图 麦克内马尔试验 放射科 磁共振成像 机构审查委员会 癌症 肿瘤科 内科学 外科 数学 统计
作者
Thierry Lefebvre,Yoshiko Ueno,Anthony Dohan,Avishek Chatterjee,Martin Vallières,Eric Winter-Reinhold,Sameh Saif,Ives R. Levesque,Xing Zeng,Reza Forghani,Jan Seuntjens,Philippe Soyer,Peter Savadjiev,Caroline Reinhold
出处
期刊:Radiology [Radiological Society of North America]
卷期号:305 (2): 375-386 被引量:72
标识
DOI:10.1148/radiol.212873
摘要

Background Stratifying high-risk histopathologic features in endometrial carcinoma is important for treatment planning. Radiomics analysis at preoperative MRI holds potential to identify high-risk phenotypes. Purpose To evaluate the performance of multiparametric MRI three-dimensional radiomics-based machine learning models for differentiating low- from high-risk histopathologic markers—deep myometrial invasion (MI), lymphovascular space invasion (LVSI), and high-grade status—and advanced-stage endometrial carcinoma. Materials and Methods This dual-center retrospective study included women with histologically proven endometrial carcinoma who underwent 1.5-T MRI before hysterectomy between January 2011 and July 2015. Exclusion criteria were tumor diameter less than 1 cm, missing MRI sequences or histopathology reports, neoadjuvant therapy, and malignant neoplasms other than endometrial carcinoma. Three-dimensional radiomics features were extracted after tumor segmentation at MRI (T2-weighted, diffusion-weighted, and dynamic contrast-enhanced MRI). Predictive features were selected in the training set with use of random forest (RF) models for each end point, and trained RF models were applied to the external test set. Five board-certified radiologists conducted MRI-based staging and deep MI assessment in the training set. Areas under the receiver operating characteristic curve (AUCs) were reported with balanced accuracies, and radiologists' readings were compared with radiomics with use of McNemar tests. Results In total, 157 women were included: 94 at the first institution (training set; mean age, 66 years ± 11 [SD]) and 63 at the second institution (test set; 67 years ± 12). RF models dichotomizing deep MI, LVSI, high grade, and International Federation of Gynecology and Obstetrics (FIGO) stage led to AUCs of 0.81 (95% CI: 0.68, 0.88), 0.80 (95% CI: 0.67, 0.93), 0.74 (95% CI: 0.61, 0.86), and 0.84 (95% CI: 0.72, 0.92), respectively, in the test set. In the training set, radiomics provided increased performance compared with radiologists' readings for identifying deep MI (balanced accuracy, 86% vs 79%; P = .03), while no evidence of a difference was observed in performance for advanced FIGO stage (80% vs 78%; P = .27). Conclusion Three-dimensional radiomics can stratify patients by using preoperative MRI according to high-risk histopathologic end points in endometrial carcinoma and provide nonsignificantly different or higher performance than radiologists in identifying advanced stage and deep myometrial invasion, respectively. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Kido and Nishio in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzzz发布了新的文献求助10
1秒前
luckly发布了新的文献求助10
1秒前
月岛滴滴发布了新的文献求助10
1秒前
科研通AI2S应助爱上彩色采纳,获得10
1秒前
小彭在海底完成签到,获得积分20
1秒前
1秒前
斯文败类应助zhangxueqing采纳,获得10
2秒前
ww完成签到,获得积分10
2秒前
2秒前
传奇3应助Sybil采纳,获得10
2秒前
yiyi发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
搜集达人应助一只雪兔子采纳,获得10
3秒前
最终幻想完成签到,获得积分10
3秒前
lilili6666发布了新的文献求助10
3秒前
Curry完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
在水一方应助RATHER采纳,获得10
4秒前
YZHSCI888发布了新的文献求助10
4秒前
5秒前
CipherSage应助大写的笨采纳,获得10
5秒前
dzjin发布了新的文献求助10
5秒前
ww发布了新的文献求助10
6秒前
zzzzZ12138发布了新的文献求助30
7秒前
7秒前
悦耳伊发布了新的文献求助10
8秒前
8秒前
memedaaaah发布了新的文献求助10
8秒前
张杰发布了新的文献求助10
8秒前
8秒前
9秒前
一篇吃不饱完成签到,获得积分10
9秒前
共享精神应助摸鱼大王采纳,获得10
10秒前
10秒前
10秒前
10秒前
今后应助灰灰成长中采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001832
求助须知:如何正确求助?哪些是违规求助? 4246915
关于积分的说明 13231512
捐赠科研通 4045758
什么是DOI,文献DOI怎么找? 2213210
邀请新用户注册赠送积分活动 1223392
关于科研通互助平台的介绍 1143701