日本使徒
海参
生物
神经肽
神经肽Y受体
受体
内科学
细胞生物学
内分泌学
生物化学
生态学
医学
作者
Chenyi Li,Yingqiu Zheng,Cong Xu,Huachen Liu,Kenneth B. Storey,Muyan Chen
出处
期刊:Peptides
[Elsevier]
日期:2022-09-01
卷期号:155: 170839-170839
被引量:7
标识
DOI:10.1016/j.peptides.2022.170839
摘要
The functional characteristics of neuropeptides in marine invertebrates have attracted significant attention recently although functional studies of luqin-type neuropeptides are still very limited, especially in deuterostomes. The sea cucumber, Apostichopus japonicus, is a representative species of deuterostomian Holothurian invertebrates. The species has high nutritional and medicinal value in China. In this study, we report the first comprehensive histological, biochemical and pharmacological characterization of luqin-type neuropeptide signaling in the sea cucumber A. japonicus. The A. japonicus luqin-like neuropeptide precursor (AjLQP) contains a single typical deuterostomian luqin-like neuropeptide AjLQ with an xFxRWamide motif. AjLQ was identified as the ligand for a luqin-type neuropeptide receptor AjLQR, that was previously predicted to be a tachykinin-type receptor, and triggers a rapid intracellular mobilization of Ca2+, followed by receptor internalization and a transient increase in ERK1/2 phosphorylation. In situ hybridization, immunohistochemistry and qRT-PCR analysis revealed extensive expression of AjLQP and AjLQ in A. japonicus tissues, especially in locomotion-related organs. In vitro pharmacological tests revealed that AjLQ caused 12.69% ± 1.99% (p < 0.01) relaxation of longitudinal muscle preparations at 10-7 M concentration. Furthermore, we observed significantly increased expression of AjLQP (about 17.63 fold, p < 0.01) in intestine of deeply aestivating sea cucumbers, which suggests that AjLQ might be involved in feeding inhibition during aestivation. The present study provides a first insight into the experimental characterization of luqin-type neuropeptide signaling in a sea cucumber. The results will broaden our understanding of the potential function of neuropeptides during important biological processes in marine invertebrates and provide theoretical support for optimizing sea cucumber aquaculture technology.
科研通智能强力驱动
Strongly Powered by AbleSci AI