Enviromic prediction is useful to define the limits of climate adaptation: A case study of common bean in Brazil

种质资源 适应(眼睛) 气候变化 环境科学 生长季节 环境资源管理 比例(比率) 作物 温带气候 农业工程 地理 生物 生态学 农学 地图学 神经科学 工程类
作者
Alexandre Bryan Heinemann,Germano Costa‐Neto,Roberto Fritsche‐Neto,David Henriques da Matta,Igor Kuivjogi Fernandes
出处
期刊:Field Crops Research [Elsevier]
卷期号:286: 108628-108628 被引量:16
标识
DOI:10.1016/j.fcr.2022.108628
摘要

Ongoing changes in the global environmental conditions foster plant breeding research to develop climate-smart cultivars as fast as possible. Data analytics are essential for achieving this goal, especially the so-called science of enviromics (large-scale environmental characterization of crop growing conditions) that could be used to pinpoint the relevant environment impacts driving the adaptation of a certain specie in a breeding framework. Here we quantified the effects of diverse climate factors on the current adaptation of elite common bean germplasm in Brazil. To capture the non-linearity of those impacts across a wide range of environments, we developed an “enviromic prediction” approach by combining Generalized Additive Models (GAM), environmental covariates (EC), and grain yield (GY) from 18 years of historical breeding trials. Then, we predicted the optimum limits for ECs at each production scenario (four regions, three seasons, and two grain types) and its respective predictions of GY adaptation. Our results indicate that the nonlinear influence of air temperature, solar radiation, and rainfall led to a huge interaction of the impacts among the development stages, seasons, and regions. This revealed that seasonality differently affected the vegetative and reproductive stages, which its impact drastically vary according to the region and season, which makes unfeasible the development of a breeding strategy for selecting for broad adaptation. Conversely, with our approach it was possible to pinpoint the effects of the region- or season-specific impacts, which helped identify the “climate limits” and critical development phases for each possible production scenario. This could allow breeders to design crop ideotypes while directing efforts to develop climate-smart varieties. Furthermore, enviromics prediction is a cost-effective way to use EC as a data analytics tool to support the visualization of regional breeding gaps for specific growing conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得30
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
ww关闭了ww文献求助
2秒前
2秒前
2秒前
2秒前
3秒前
4秒前
5秒前
6秒前
酒九发布了新的文献求助10
7秒前
李宁完成签到,获得积分20
7秒前
冷静的莞发布了新的文献求助10
8秒前
小花花发布了新的文献求助10
9秒前
9秒前
9秒前
葡萄成熟时关注了科研通微信公众号
10秒前
11秒前
莫言发布了新的文献求助10
11秒前
深情安青应助呵呵哒采纳,获得10
11秒前
12秒前
科研通AI2S应助悠然采纳,获得10
14秒前
14秒前
不落完成签到,获得积分10
14秒前
Bismarck关注了科研通微信公众号
20秒前
20秒前
lucky完成签到,获得积分10
21秒前
23秒前
23秒前
24秒前
25秒前
25秒前
憨憨完成签到,获得积分10
26秒前
小太阳发布了新的文献求助10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136101
求助须知:如何正确求助?哪些是违规求助? 2787001
关于积分的说明 7780169
捐赠科研通 2443122
什么是DOI,文献DOI怎么找? 1298899
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870