Enviromic prediction is useful to define the limits of climate adaptation: A case study of common bean in Brazil

种质资源 适应(眼睛) 气候变化 环境科学 生长季节 环境资源管理 比例(比率) 作物 温带气候 农业工程 地理 生物 生态学 农学 地图学 神经科学 工程类
作者
Alexandre Bryan Heinemann,Germano Costa‐Neto,Roberto Fritsche‐Neto,David Henriques da Matta,Igor Kuivjogi Fernandes
出处
期刊:Field Crops Research [Elsevier BV]
卷期号:286: 108628-108628 被引量:16
标识
DOI:10.1016/j.fcr.2022.108628
摘要

Ongoing changes in the global environmental conditions foster plant breeding research to develop climate-smart cultivars as fast as possible. Data analytics are essential for achieving this goal, especially the so-called science of enviromics (large-scale environmental characterization of crop growing conditions) that could be used to pinpoint the relevant environment impacts driving the adaptation of a certain specie in a breeding framework. Here we quantified the effects of diverse climate factors on the current adaptation of elite common bean germplasm in Brazil. To capture the non-linearity of those impacts across a wide range of environments, we developed an “enviromic prediction” approach by combining Generalized Additive Models (GAM), environmental covariates (EC), and grain yield (GY) from 18 years of historical breeding trials. Then, we predicted the optimum limits for ECs at each production scenario (four regions, three seasons, and two grain types) and its respective predictions of GY adaptation. Our results indicate that the nonlinear influence of air temperature, solar radiation, and rainfall led to a huge interaction of the impacts among the development stages, seasons, and regions. This revealed that seasonality differently affected the vegetative and reproductive stages, which its impact drastically vary according to the region and season, which makes unfeasible the development of a breeding strategy for selecting for broad adaptation. Conversely, with our approach it was possible to pinpoint the effects of the region- or season-specific impacts, which helped identify the “climate limits” and critical development phases for each possible production scenario. This could allow breeders to design crop ideotypes while directing efforts to develop climate-smart varieties. Furthermore, enviromics prediction is a cost-effective way to use EC as a data analytics tool to support the visualization of regional breeding gaps for specific growing conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐曼凝发布了新的文献求助10
刚刚
1秒前
高贵路灯发布了新的文献求助10
1秒前
lynn发布了新的文献求助10
1秒前
1秒前
1秒前
仁爱的若剑完成签到 ,获得积分10
1秒前
1秒前
1秒前
斯文败类应助wade采纳,获得10
2秒前
上官若男应助诚心尔琴采纳,获得10
2秒前
cly3397完成签到,获得积分10
2秒前
2秒前
mm发布了新的文献求助10
3秒前
咯咚完成签到 ,获得积分10
3秒前
4秒前
4秒前
称心寒松发布了新的文献求助10
4秒前
mehplamnha完成签到,获得积分10
4秒前
感到蔚蓝发布了新的文献求助10
4秒前
kean1943完成签到,获得积分10
5秒前
欢呼妙菱发布了新的文献求助10
5秒前
Aileen完成签到,获得积分10
6秒前
64658应助兴奋海雪采纳,获得10
6秒前
领导范儿应助兴奋海雪采纳,获得10
6秒前
XSB完成签到,获得积分10
6秒前
个性梦蕊发布了新的文献求助10
6秒前
6秒前
Rencal发布了新的文献求助10
6秒前
随便取完成签到 ,获得积分10
6秒前
balabala发布了新的文献求助10
6秒前
7秒前
果冻信号完成签到,获得积分10
8秒前
还好发布了新的文献求助10
8秒前
8秒前
starkisses完成签到,获得积分10
8秒前
pp完成签到,获得积分10
9秒前
zhuan完成签到,获得积分10
9秒前
一行白鹭完成签到,获得积分20
9秒前
从容的宝马完成签到,获得积分10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635