Revealing Influence of Meteorological Conditions on Air Quality Prediction Using Explainable Deep Learning

空气质量指数 可信赖性 天气预报 环境科学 质量(理念) 计算机科学 人工智能 深度学习 气象学 空气温度 机器学习 空气污染物 湿度 大气模式 空气污染 地理 化学 计算机安全 哲学 有机化学 认识论
作者
Yuting Yang,Gang Mei,Stefano Izzo
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 50755-50773 被引量:19
标识
DOI:10.1109/access.2022.3173734
摘要

Meteorological conditions have a strong influence on air quality and can play an important role in air quality prediction. However, due to the “black-box” nature of deep learning, it is difficult to obtain trustworthy deep learning models when considering meteorological conditions in air quality prediction. To address the above problem, in this paper, we reveal the influence of meteorological conditions on air quality prediction by utilizing explainable deep learning. In this paper, (1) the source data from air pollutant datasets, including PM 2.5 , PM 10 , SO 2 hourly concentration, and the meteorological condition datasets measuring the temperature, humidity, and atmospheric pressure are obtained; (2) the Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models are established for air quality prediction in 4 conditions; (3) the SHapley Additive exPlanation (SHAP) method is employed to analyze the explainability of the air quality prediction models. We find that the prediction accuracy is not improved by considering only meteorological conditions. However, when combining meteorological conditions with other air pollutants, the prediction accuracy is higher than considering other air pollutants. In addition, the largest contribution to air quality prediction is atmospheric pressure, followed by humidity and temperature. The reason for the different accuracies of the prediction may because of the interaction between meteorological conditions and other air pollutants. The investigated results in this paper can help improve the prediction accuracy of air quality and achieve trusted air quality predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
敏感妙竹完成签到,获得积分10
1秒前
Jasper应助kaka091采纳,获得10
1秒前
2秒前
Hhhh完成签到 ,获得积分10
2秒前
msd2phd完成签到,获得积分10
2秒前
夏末发布了新的文献求助10
2秒前
4秒前
summer发布了新的文献求助10
4秒前
4秒前
酷波er应助稳重茹嫣采纳,获得30
4秒前
4秒前
啾啾发布了新的文献求助10
5秒前
5秒前
好好完成签到,获得积分10
6秒前
搞怪的羊发布了新的文献求助10
6秒前
6秒前
NexusExplorer应助敏感妙竹采纳,获得10
6秒前
123发布了新的文献求助10
7秒前
7秒前
xiaosu发布了新的文献求助200
8秒前
8秒前
搞学术发布了新的文献求助10
8秒前
打工人发布了新的文献求助10
8秒前
汉堡包应助白羊采纳,获得10
9秒前
11秒前
11秒前
11秒前
斯文尔白完成签到 ,获得积分10
11秒前
ZQP发布了新的文献求助10
12秒前
嘉嘉琦发布了新的文献求助10
13秒前
夏末完成签到,获得积分10
13秒前
alei1203发布了新的文献求助10
13秒前
hfbbaby完成签到,获得积分10
14秒前
简单发布了新的文献求助10
15秒前
将将发布了新的文献求助10
15秒前
pobbo完成签到,获得积分10
15秒前
烟花应助xx-xxx采纳,获得10
16秒前
16秒前
斯文败类应助ZQP采纳,获得10
17秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137994
求助须知:如何正确求助?哪些是违规求助? 2788986
关于积分的说明 7789404
捐赠科研通 2445432
什么是DOI,文献DOI怎么找? 1300328
科研通“疑难数据库(出版商)”最低求助积分说明 625900
版权声明 601046