牙周膜干细胞
牙周炎
微泡
间充质干细胞
牙周纤维
旁分泌信号
牙槽
再生(生物学)
干细胞
细胞生物学
医学
外体
免疫学
癌症研究
化学
生物
牙科
内科学
小RNA
碱性磷酸酶
生物化学
受体
基因
酶
作者
Fengzhen Lei,Mujia Li,Tingting Lin,Hong Zhou,Fei Wang,Xiaoxia Su
标识
DOI:10.1016/j.actbio.2021.12.035
摘要
Periodontitis is the primary cause of tooth loss, but there is no effective treatment to repair inflammatory bone loss in periodontitis. Exosomes emerge as essential paracrine factors of mesenchymal stem cells (MSCs) that mediated tissue regeneration. Here, we investigated the potential of exosomes secreted by periodontal ligament stem cells (PDLSCs) as therapeutics for the bone defect in periodontitis. Exosomes secreted from PDLSCs derived from healthy periodontal ligaments (h-PDLSCs) and their function were evaluated on PDLSCs isolated from the inflammatory periodontal ligament of periodontitis patients (i-PDLSCs). Treatment of exosomes of h-PDLSCs led to an increase in the formation of mineralized nodules and the expressions of osteogenic genes and proteins in i-PDLSCs. Mechanistically, h-PDLSCs-exosomes suppressed the over-activation of canonical Wnt signaling to recover the osteogenic differentiation capacity of i-PDLSCs. To evaluate the therapeutic of exosomes on inflammatory bone loss, h-PDLSCs-exosomes loaded with Matrigel or β-TCP were employed to repair bone defects in rat models of periodontitis. Compared to the vehicle-treated control group, h-PDLSCs-exosomes-treated rats resulted in more bone formation in the defect of alveolar bone. In conclusion, these results demonstrated that exosomes derived from healthy PDLSCs could rescue the osteogenesis capacity of endogenous stem cells under an inflammatory environment and promote regeneration of alveolar bone. Our findings suggest that MSCs-derived exosome is an effective and practical cell-free MSC therapeutic for the treatment of periodontitis. STATEMENT OF SIGNIFICANCE: There is no effective treatment to repair inflammatory bone loss in periodontitis. As essential paracrine factors of PDLSCs, exosomes might mediate tissue regeneration during stem cell therapy. Here, we reported that exosomes secreted from healthy PDLSCs promoted the osteogenic differentiation of PDLSCs derived from periodontitis tissue. Healthy PDLSCs-exosomes treatment resulted in accelerated bone formation in the defect of alveolar bone in rat models of periodontitis. Mechanistically, h-PDLSCs-exosomes suppressed the over-activation of canonical Wnt signaling to recover the osteogenic differentiation capacity of inflammatory PDLSCs. These findings suggest that MSCs-derived exosome is an effective and practical cell-free MSC therapeutic for the treatment of periodontitis.
科研通智能强力驱动
Strongly Powered by AbleSci AI