生物
康蒂格
遗传学
端粒
基因组
序列(生物学)
顺序装配
染色体
全基因组测序
计算生物学
参考基因组
亚端粒
DNA测序
重复序列
作者
Pavla Navrátilová,Helena Toegelová,Zuzana Tulpová,Yi-Tzu Kuo,Nils Stein,Jaroslav Dolezel,Andreas Houben,Hana Šimková,Martin Mascher
摘要
The first gapless, telomere-to-telomere (T2T) sequence assemblies of plant chromosomes were reported recently. However, sequence assemblies of most plant genomes remain fragmented. Only recent breakthroughs in accurate long-read sequencing have made it possible to achieve highly contiguous sequence assemblies with a few tens of contigs per chromosome, that is a number small enough to allow for a systematic inquiry into the causes of the remaining sequence gaps and the approaches and resources needed to close them. Here, we analyse sequence gaps in the current reference genome sequence of barley cv. Morex (MorexV3). Optical map and sequence raw data, complemented by ChIP-seq data for centromeric histone variant CENH3, were used to estimate the abundance of centromeric, ribosomal DNA, and subtelomeric repeats in the barley genome. These estimates were compared with copy numbers in the MorexV3 pseudomolecule sequence. We found that almost all centromeric sequences and 45S ribosomal DNA repeat arrays were absent from the MorexV3 pseudomolecules and that the majority of sequence gaps can be attributed to assembly breakdown in long stretches of satellite repeats. However, missing sequences cannot fully account for the difference between assembly size and flow cytometric genome size estimates. We discuss the prospects of gap closure with ultra-long sequence reads.
科研通智能强力驱动
Strongly Powered by AbleSci AI