已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PyCSP: A Python package for the analysis and simplification of chemically reacting systems based on Computational Singular Perturbation

Python(编程语言) 计算机科学 脚本语言 奇异摄动 文档 燃烧 计算科学 源代码 程序设计语言 算法 理论计算机科学 化学 数学 数学分析 有机化学
作者
Riccardo Malpica Galassi
出处
期刊:Computer Physics Communications [Elsevier]
卷期号:276: 108364-108364 被引量:22
标识
DOI:10.1016/j.cpc.2022.108364
摘要

PyCSP is a Python package for the analysis and simplification of chemically reacting systems, using algorithms based on the Computational Singular Perturbation (CSP) theory. It provides tools for the local characterization of the chemical dynamics, enabled by the recognition of a convenient projection basis which carries out a timescale-based uncoupling. The tools supplied within the package allow one to identify the rate-controlling chemical reactions, the intrinsic chemical timescales, the driving chemical timescale and indicators of the system's explosive or dissipative propensity. Possible applications are the analysis of numerical simulations of reacting flows, and the reduction of chemical kinetics models, based on the CSP information. This manuscript provides a brief overview of the foundations of CSP, a description of the libraries, and demonstrations of the features implemented in PyCSP with code examples, along with practical advices and guidelines for users. Program Title: PyCSP CPC Library link to program files: https://doi.org/10.17632/59pw7pvkkb.1 Developer's repository link: https://github.com/rmalpica/PyCSP Licensing provisions: MIT Programming language: Python Supplementary material: Code documentation and Python scripts employed to generate the figures. Nature of problem: The evermore increasing availability of high-performance computing resources, and the compelling need for more advanced and sustainable energy conversion devices, based on unconventional combustion regimes and alternative fuels, are driving towards an unprecedented massive production of data in numerical simulations of reacting flows. The research questions behind the production of such huge datasets are typically related to (i) the fundamental understanding of combustion phenomena, and (ii) the development of reduced order models and/or turbulence-chemistry interaction sub-grid scale (closure) models, both with the aim of accelerating large scale simulations of real combustion devices. Solution method: Both categories of research questions can widely benefit from the numerical tools available in PyCSP. The computational singular perturbation (CSP) framework allows one to extract concise information from chemically reacting systems, automatically and at reasonable cost. This is especially useful when the dataset is so massive and the number of degrees of freedom so large, i.e., hundreds of species/reactions per cell, that even a visual inspection becomes unmanageable. PyCSP offers a fast, user-friendly implementation of numerous analysis tools, enabling a more systematic data processing and, ultimately, providing the user with a deeper physical understanding of the problem under investigation. Moreover, the CSP theoretical framework can be exploited to generate reduced order models (ROMs), tailored to and to be employed in specific applications, in order to drastically reduce the computational cost of a numerical simulation, while retaining accuracy in global observables. The ROM is in the form of a skeletal kinetic mechanism of adjustable fidelity, or an adaptive chemistry integrator. Additional comments including restrictions and unusual features: PyCSP relies on Cantera, an open-source suite of tools for problems involving chemical kinetics, thermodynamics, and transport processes, to efficiently incorporate detailed chemical thermo-kinetics models into the CSP calculations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小昭完成签到,获得积分10
1秒前
汉堡包应助畅快的书雪采纳,获得10
1秒前
年少轻狂最情深完成签到 ,获得积分10
2秒前
4秒前
samky完成签到,获得积分10
7秒前
朴素苑睐完成签到 ,获得积分10
7秒前
8秒前
奔跑石小猛完成签到,获得积分10
9秒前
朴素苑睐关注了科研通微信公众号
11秒前
思源应助远枫orz采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
Criminology34应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
烟花应助科研通管家采纳,获得10
16秒前
Gun完成签到,获得积分10
17秒前
科研通AI2S应助vivi采纳,获得10
17秒前
小巧怀薇完成签到,获得积分10
20秒前
21秒前
23秒前
StonesKing完成签到,获得积分20
24秒前
ccm应助阿Q采纳,获得30
24秒前
清秀灵薇完成签到,获得积分10
24秒前
siji发布了新的文献求助10
25秒前
27秒前
28秒前
StonesKing发布了新的文献求助10
33秒前
35秒前
Viiigo完成签到,获得积分10
36秒前
小二郎应助siji采纳,获得10
37秒前
羊羊完成签到 ,获得积分10
40秒前
40秒前
丹丹子完成签到 ,获得积分10
41秒前
lynn完成签到,获得积分10
43秒前
43秒前
44秒前
归尘发布了新的文献求助10
47秒前
iorpi完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418147
求助须知:如何正确求助?哪些是违规求助? 4533868
关于积分的说明 14142681
捐赠科研通 4450148
什么是DOI,文献DOI怎么找? 2441102
邀请新用户注册赠送积分活动 1432858
关于科研通互助平台的介绍 1410079