PyCSP: A Python package for the analysis and simplification of chemically reacting systems based on Computational Singular Perturbation

Python(编程语言) 计算机科学 脚本语言 奇异摄动 文档 燃烧 计算科学 源代码 程序设计语言 算法 理论计算机科学 化学 数学 数学分析 有机化学
作者
Riccardo Malpica Galassi
出处
期刊:Computer Physics Communications [Elsevier BV]
卷期号:276: 108364-108364 被引量:22
标识
DOI:10.1016/j.cpc.2022.108364
摘要

PyCSP is a Python package for the analysis and simplification of chemically reacting systems, using algorithms based on the Computational Singular Perturbation (CSP) theory. It provides tools for the local characterization of the chemical dynamics, enabled by the recognition of a convenient projection basis which carries out a timescale-based uncoupling. The tools supplied within the package allow one to identify the rate-controlling chemical reactions, the intrinsic chemical timescales, the driving chemical timescale and indicators of the system's explosive or dissipative propensity. Possible applications are the analysis of numerical simulations of reacting flows, and the reduction of chemical kinetics models, based on the CSP information. This manuscript provides a brief overview of the foundations of CSP, a description of the libraries, and demonstrations of the features implemented in PyCSP with code examples, along with practical advices and guidelines for users. Program Title: PyCSP CPC Library link to program files: https://doi.org/10.17632/59pw7pvkkb.1 Developer's repository link: https://github.com/rmalpica/PyCSP Licensing provisions: MIT Programming language: Python Supplementary material: Code documentation and Python scripts employed to generate the figures. Nature of problem: The evermore increasing availability of high-performance computing resources, and the compelling need for more advanced and sustainable energy conversion devices, based on unconventional combustion regimes and alternative fuels, are driving towards an unprecedented massive production of data in numerical simulations of reacting flows. The research questions behind the production of such huge datasets are typically related to (i) the fundamental understanding of combustion phenomena, and (ii) the development of reduced order models and/or turbulence-chemistry interaction sub-grid scale (closure) models, both with the aim of accelerating large scale simulations of real combustion devices. Solution method: Both categories of research questions can widely benefit from the numerical tools available in PyCSP. The computational singular perturbation (CSP) framework allows one to extract concise information from chemically reacting systems, automatically and at reasonable cost. This is especially useful when the dataset is so massive and the number of degrees of freedom so large, i.e., hundreds of species/reactions per cell, that even a visual inspection becomes unmanageable. PyCSP offers a fast, user-friendly implementation of numerous analysis tools, enabling a more systematic data processing and, ultimately, providing the user with a deeper physical understanding of the problem under investigation. Moreover, the CSP theoretical framework can be exploited to generate reduced order models (ROMs), tailored to and to be employed in specific applications, in order to drastically reduce the computational cost of a numerical simulation, while retaining accuracy in global observables. The ROM is in the form of a skeletal kinetic mechanism of adjustable fidelity, or an adaptive chemistry integrator. Additional comments including restrictions and unusual features: PyCSP relies on Cantera, an open-source suite of tools for problems involving chemical kinetics, thermodynamics, and transport processes, to efficiently incorporate detailed chemical thermo-kinetics models into the CSP calculations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大勺完成签到 ,获得积分10
刚刚
科研狗敏敏完成签到,获得积分20
1秒前
牛马完成签到 ,获得积分10
1秒前
4秒前
普鲁卡因完成签到,获得积分10
5秒前
倪塔宝贝完成签到 ,获得积分10
5秒前
小花生完成签到 ,获得积分10
5秒前
知了完成签到 ,获得积分10
9秒前
为你钟情完成签到 ,获得积分10
10秒前
13秒前
14秒前
韭菜盒子发布了新的文献求助10
16秒前
潘特发布了新的文献求助10
19秒前
乌滴子完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
善学以致用应助韭菜盒子采纳,获得10
21秒前
jiaaniu完成签到 ,获得积分10
23秒前
清脆靳完成签到,获得积分10
24秒前
cp3xzh完成签到,获得积分10
24秒前
tian发布了新的文献求助10
26秒前
tian发布了新的文献求助10
26秒前
明理宛秋完成签到 ,获得积分10
27秒前
S月小小完成签到,获得积分10
31秒前
斯文的慕儿完成签到 ,获得积分10
38秒前
keen完成签到 ,获得积分10
38秒前
韭菜盒子完成签到,获得积分20
39秒前
潘特完成签到,获得积分10
40秒前
小彭友完成签到,获得积分10
51秒前
52秒前
josie完成签到 ,获得积分10
56秒前
llll完成签到 ,获得积分10
56秒前
量子星尘发布了新的文献求助10
56秒前
韭菜发布了新的文献求助10
56秒前
外向的斑马完成签到 ,获得积分10
57秒前
村长热爱美丽完成签到 ,获得积分10
59秒前
尹尹关注了科研通微信公众号
1分钟前
呆呆完成签到 ,获得积分10
1分钟前
xianyaoz完成签到 ,获得积分0
1分钟前
杨远杰完成签到,获得积分10
1分钟前
蓝桉完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022