PyCSP: A Python package for the analysis and simplification of chemically reacting systems based on Computational Singular Perturbation

Python(编程语言) 计算机科学 脚本语言 奇异摄动 文档 燃烧 计算科学 源代码 程序设计语言 算法 理论计算机科学 化学 数学 数学分析 有机化学
作者
Riccardo Malpica Galassi
出处
期刊:Computer Physics Communications [Elsevier]
卷期号:276: 108364-108364 被引量:22
标识
DOI:10.1016/j.cpc.2022.108364
摘要

PyCSP is a Python package for the analysis and simplification of chemically reacting systems, using algorithms based on the Computational Singular Perturbation (CSP) theory. It provides tools for the local characterization of the chemical dynamics, enabled by the recognition of a convenient projection basis which carries out a timescale-based uncoupling. The tools supplied within the package allow one to identify the rate-controlling chemical reactions, the intrinsic chemical timescales, the driving chemical timescale and indicators of the system's explosive or dissipative propensity. Possible applications are the analysis of numerical simulations of reacting flows, and the reduction of chemical kinetics models, based on the CSP information. This manuscript provides a brief overview of the foundations of CSP, a description of the libraries, and demonstrations of the features implemented in PyCSP with code examples, along with practical advices and guidelines for users. Program Title: PyCSP CPC Library link to program files: https://doi.org/10.17632/59pw7pvkkb.1 Developer's repository link: https://github.com/rmalpica/PyCSP Licensing provisions: MIT Programming language: Python Supplementary material: Code documentation and Python scripts employed to generate the figures. Nature of problem: The evermore increasing availability of high-performance computing resources, and the compelling need for more advanced and sustainable energy conversion devices, based on unconventional combustion regimes and alternative fuels, are driving towards an unprecedented massive production of data in numerical simulations of reacting flows. The research questions behind the production of such huge datasets are typically related to (i) the fundamental understanding of combustion phenomena, and (ii) the development of reduced order models and/or turbulence-chemistry interaction sub-grid scale (closure) models, both with the aim of accelerating large scale simulations of real combustion devices. Solution method: Both categories of research questions can widely benefit from the numerical tools available in PyCSP. The computational singular perturbation (CSP) framework allows one to extract concise information from chemically reacting systems, automatically and at reasonable cost. This is especially useful when the dataset is so massive and the number of degrees of freedom so large, i.e., hundreds of species/reactions per cell, that even a visual inspection becomes unmanageable. PyCSP offers a fast, user-friendly implementation of numerous analysis tools, enabling a more systematic data processing and, ultimately, providing the user with a deeper physical understanding of the problem under investigation. Moreover, the CSP theoretical framework can be exploited to generate reduced order models (ROMs), tailored to and to be employed in specific applications, in order to drastically reduce the computational cost of a numerical simulation, while retaining accuracy in global observables. The ROM is in the form of a skeletal kinetic mechanism of adjustable fidelity, or an adaptive chemistry integrator. Additional comments including restrictions and unusual features: PyCSP relies on Cantera, an open-source suite of tools for problems involving chemical kinetics, thermodynamics, and transport processes, to efficiently incorporate detailed chemical thermo-kinetics models into the CSP calculations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
江边鸟完成签到 ,获得积分10
1秒前
微笑翠桃完成签到,获得积分20
2秒前
小开心发布了新的文献求助10
2秒前
Eon发布了新的文献求助10
2秒前
姚美阁完成签到 ,获得积分10
3秒前
mufcyang发布了新的文献求助10
4秒前
5秒前
5秒前
Puffkten发布了新的文献求助10
6秒前
与梦随行2011完成签到,获得积分10
6秒前
6秒前
高哈哈哈完成签到,获得积分10
7秒前
yr发布了新的文献求助10
10秒前
11秒前
微笑翠桃发布了新的文献求助10
14秒前
14秒前
马佳音完成签到 ,获得积分10
15秒前
在水一方应助Eon采纳,获得10
15秒前
TB123发布了新的文献求助10
15秒前
17秒前
JHL完成签到 ,获得积分10
17秒前
19秒前
19秒前
黎是叻熠黎完成签到,获得积分10
20秒前
每天必补一科完成签到,获得积分10
20秒前
花生完成签到,获得积分10
21秒前
mufcyang完成签到,获得积分10
21秒前
22秒前
缪缪发布了新的文献求助10
23秒前
23秒前
风清扬发布了新的文献求助10
24秒前
甜美乘云完成签到,获得积分10
25秒前
万能图书馆应助嘿嘿采纳,获得10
25秒前
27秒前
27秒前
xuxin完成签到 ,获得积分10
28秒前
大模型应助温柔柜子采纳,获得10
28秒前
啦啦啦完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714