PyCSP: A Python package for the analysis and simplification of chemically reacting systems based on Computational Singular Perturbation

Python(编程语言) 计算机科学 脚本语言 奇异摄动 文档 燃烧 计算科学 源代码 程序设计语言 算法 理论计算机科学 化学 数学 数学分析 有机化学
作者
Riccardo Malpica Galassi
出处
期刊:Computer Physics Communications [Elsevier BV]
卷期号:276: 108364-108364 被引量:22
标识
DOI:10.1016/j.cpc.2022.108364
摘要

PyCSP is a Python package for the analysis and simplification of chemically reacting systems, using algorithms based on the Computational Singular Perturbation (CSP) theory. It provides tools for the local characterization of the chemical dynamics, enabled by the recognition of a convenient projection basis which carries out a timescale-based uncoupling. The tools supplied within the package allow one to identify the rate-controlling chemical reactions, the intrinsic chemical timescales, the driving chemical timescale and indicators of the system's explosive or dissipative propensity. Possible applications are the analysis of numerical simulations of reacting flows, and the reduction of chemical kinetics models, based on the CSP information. This manuscript provides a brief overview of the foundations of CSP, a description of the libraries, and demonstrations of the features implemented in PyCSP with code examples, along with practical advices and guidelines for users. Program Title: PyCSP CPC Library link to program files: https://doi.org/10.17632/59pw7pvkkb.1 Developer's repository link: https://github.com/rmalpica/PyCSP Licensing provisions: MIT Programming language: Python Supplementary material: Code documentation and Python scripts employed to generate the figures. Nature of problem: The evermore increasing availability of high-performance computing resources, and the compelling need for more advanced and sustainable energy conversion devices, based on unconventional combustion regimes and alternative fuels, are driving towards an unprecedented massive production of data in numerical simulations of reacting flows. The research questions behind the production of such huge datasets are typically related to (i) the fundamental understanding of combustion phenomena, and (ii) the development of reduced order models and/or turbulence-chemistry interaction sub-grid scale (closure) models, both with the aim of accelerating large scale simulations of real combustion devices. Solution method: Both categories of research questions can widely benefit from the numerical tools available in PyCSP. The computational singular perturbation (CSP) framework allows one to extract concise information from chemically reacting systems, automatically and at reasonable cost. This is especially useful when the dataset is so massive and the number of degrees of freedom so large, i.e., hundreds of species/reactions per cell, that even a visual inspection becomes unmanageable. PyCSP offers a fast, user-friendly implementation of numerous analysis tools, enabling a more systematic data processing and, ultimately, providing the user with a deeper physical understanding of the problem under investigation. Moreover, the CSP theoretical framework can be exploited to generate reduced order models (ROMs), tailored to and to be employed in specific applications, in order to drastically reduce the computational cost of a numerical simulation, while retaining accuracy in global observables. The ROM is in the form of a skeletal kinetic mechanism of adjustable fidelity, or an adaptive chemistry integrator. Additional comments including restrictions and unusual features: PyCSP relies on Cantera, an open-source suite of tools for problems involving chemical kinetics, thermodynamics, and transport processes, to efficiently incorporate detailed chemical thermo-kinetics models into the CSP calculations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助庚午采纳,获得10
1秒前
2秒前
3秒前
5秒前
yzx发布了新的文献求助10
6秒前
记ds发布了新的文献求助10
7秒前
张火火发布了新的文献求助10
10秒前
斯文败类应助WJP采纳,获得10
10秒前
乐乐应助完美修杰采纳,获得10
10秒前
11秒前
12秒前
12秒前
善学以致用应助记ds采纳,获得10
13秒前
梨子完成签到,获得积分10
14秒前
14秒前
14秒前
guojingjing发布了新的文献求助10
15秒前
可爱的函函应助K0h采纳,获得10
15秒前
changping应助烟酒僧采纳,获得10
17秒前
炙热的以南完成签到 ,获得积分10
17秒前
17秒前
科研通AI2S应助张火火采纳,获得10
17秒前
梨子发布了新的文献求助10
18秒前
Wdw2236发布了新的文献求助10
18秒前
外向的慕灵完成签到,获得积分10
20秒前
zzk发布了新的文献求助10
20秒前
小江不饿完成签到,获得积分10
22秒前
Hao发布了新的文献求助10
23秒前
25秒前
占那个完成签到 ,获得积分10
25秒前
wangcaoyi667完成签到,获得积分10
25秒前
传奇3应助guojingjing采纳,获得10
26秒前
28秒前
28秒前
大个应助烟酒僧采纳,获得10
29秒前
29秒前
缓慢怜翠发布了新的文献求助10
30秒前
30秒前
彭于晏应助白茶泡泡球采纳,获得10
31秒前
坦率灵煌完成签到,获得积分10
32秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208823
求助须知:如何正确求助?哪些是违规求助? 4386109
关于积分的说明 13660182
捐赠科研通 4245203
什么是DOI,文献DOI怎么找? 2329161
邀请新用户注册赠送积分活动 1326969
关于科研通互助平台的介绍 1279265