PyCSP: A Python package for the analysis and simplification of chemically reacting systems based on Computational Singular Perturbation

Python(编程语言) 计算机科学 脚本语言 奇异摄动 文档 燃烧 计算科学 源代码 程序设计语言 算法 理论计算机科学 化学 数学 数学分析 有机化学
作者
Riccardo Malpica Galassi
出处
期刊:Computer Physics Communications [Elsevier]
卷期号:276: 108364-108364 被引量:22
标识
DOI:10.1016/j.cpc.2022.108364
摘要

PyCSP is a Python package for the analysis and simplification of chemically reacting systems, using algorithms based on the Computational Singular Perturbation (CSP) theory. It provides tools for the local characterization of the chemical dynamics, enabled by the recognition of a convenient projection basis which carries out a timescale-based uncoupling. The tools supplied within the package allow one to identify the rate-controlling chemical reactions, the intrinsic chemical timescales, the driving chemical timescale and indicators of the system's explosive or dissipative propensity. Possible applications are the analysis of numerical simulations of reacting flows, and the reduction of chemical kinetics models, based on the CSP information. This manuscript provides a brief overview of the foundations of CSP, a description of the libraries, and demonstrations of the features implemented in PyCSP with code examples, along with practical advices and guidelines for users. Program Title: PyCSP CPC Library link to program files: https://doi.org/10.17632/59pw7pvkkb.1 Developer's repository link: https://github.com/rmalpica/PyCSP Licensing provisions: MIT Programming language: Python Supplementary material: Code documentation and Python scripts employed to generate the figures. Nature of problem: The evermore increasing availability of high-performance computing resources, and the compelling need for more advanced and sustainable energy conversion devices, based on unconventional combustion regimes and alternative fuels, are driving towards an unprecedented massive production of data in numerical simulations of reacting flows. The research questions behind the production of such huge datasets are typically related to (i) the fundamental understanding of combustion phenomena, and (ii) the development of reduced order models and/or turbulence-chemistry interaction sub-grid scale (closure) models, both with the aim of accelerating large scale simulations of real combustion devices. Solution method: Both categories of research questions can widely benefit from the numerical tools available in PyCSP. The computational singular perturbation (CSP) framework allows one to extract concise information from chemically reacting systems, automatically and at reasonable cost. This is especially useful when the dataset is so massive and the number of degrees of freedom so large, i.e., hundreds of species/reactions per cell, that even a visual inspection becomes unmanageable. PyCSP offers a fast, user-friendly implementation of numerous analysis tools, enabling a more systematic data processing and, ultimately, providing the user with a deeper physical understanding of the problem under investigation. Moreover, the CSP theoretical framework can be exploited to generate reduced order models (ROMs), tailored to and to be employed in specific applications, in order to drastically reduce the computational cost of a numerical simulation, while retaining accuracy in global observables. The ROM is in the form of a skeletal kinetic mechanism of adjustable fidelity, or an adaptive chemistry integrator. Additional comments including restrictions and unusual features: PyCSP relies on Cantera, an open-source suite of tools for problems involving chemical kinetics, thermodynamics, and transport processes, to efficiently incorporate detailed chemical thermo-kinetics models into the CSP calculations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助繁荣的夏烟采纳,获得10
刚刚
1秒前
平安只喜乐完成签到,获得积分10
1秒前
苹果不平完成签到,获得积分10
1秒前
1秒前
Pinkie完成签到,获得积分10
2秒前
坦率依柔发布了新的文献求助30
2秒前
小何发布了新的文献求助10
3秒前
stay发布了新的文献求助10
3秒前
嗯嗯完成签到,获得积分10
3秒前
4秒前
4秒前
小胡胡完成签到,获得积分10
4秒前
4秒前
人生苦短完成签到,获得积分10
4秒前
5秒前
晨之曦光完成签到,获得积分20
6秒前
无花果应助粉蒸肉采纳,获得10
7秒前
人生苦短发布了新的文献求助10
8秒前
8秒前
Bailey完成签到,获得积分10
8秒前
在水一方应助ysl采纳,获得10
8秒前
8秒前
希望天下0贩的0应助Dora采纳,获得10
9秒前
乐观的颦发布了新的文献求助10
9秒前
文6发布了新的文献求助10
9秒前
9秒前
七秒鱼完成签到,获得积分10
9秒前
追寻访卉发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
一一完成签到,获得积分10
10秒前
诸事顺利发布了新的文献求助30
11秒前
Yixuan_Zou发布了新的文献求助10
11秒前
11秒前
darling完成签到,获得积分10
11秒前
彩色又夏完成签到,获得积分20
12秒前
12秒前
13秒前
13秒前
鸡蛋灌饼完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576966
求助须知:如何正确求助?哪些是违规求助? 4662231
关于积分的说明 14740378
捐赠科研通 4602878
什么是DOI,文献DOI怎么找? 2525991
邀请新用户注册赠送积分活动 1495885
关于科研通互助平台的介绍 1465470