Predicting major adverse cardiac events based on multi‐parameter coronary computed tomography angiography

狼牙棒 列线图 医学 狭窄 部分流量储备 放射科 计算机断层血管造影 心脏成像 心脏病学 内科学 血管造影 冠状动脉造影 经皮冠状动脉介入治疗 心肌梗塞
作者
Jie Wang,Lijuan Zhou,Hongwei Chen,Shangyu Zeng,Qiuxiang Wu,Xiangming Fang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (6): 3612-3623 被引量:4
标识
DOI:10.1002/mp.15616
摘要

To build a nomogram model to improve the prediction of major adverse cardiac events (MACE) using multi-parameter coronary computed tomography angiography (CCTA).All patients underwent CCTA. Those who developed MACE 90 days later but within 2 years between January 2008 and December 2018 were retrospectively enrolled as MACE group, while those without MACE were 1:1 propensity score matched in the control group. CCTA stenosis, plaque qualitative-quantitative characteristics, and fractional flow reserve derived from computed tomography angiography (FFRct) were analyzed and compared between the two groups. The independent risk factors for predicting MACE were obtained through univariate and multivariate regression analysis, after which multi-parameter models were built to predict MACE. Finally, the nomogram for predicting MACE was created using the independent risk factors from multivariate regression analysis.A total of 483 vessels in 260 patients were successfully analyzed. The combination of CCTA stenosis, plaque qualitative-quantitative characteristics, and FFRct (AUC = 0.922, P < 0.001) showed a higher predictive value compared to CCTA stenosis alone, FFRct alone, plaque qualitative-quantitative characteristics alone, CCTA stenosis combined with plaque qualitative-quantitative characteristics, and CCTA stenosis combined with FFRct (all P < 0.001). Independent risk factors were CCTA stenosis ≥50%, low attenuation plaque, positive remodeling, napkin ring sign, lipid plaque volume proportion, and FFRct. Subsequently, a nomogram was created using these independent risk factors.The multi-parameter CCTA model has improved performance in predicting MACE. Nomogram for predicting MACE, which includes these factors, represents a practical and easy-to-use method in the clinical setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桃子e发布了新的文献求助10
1秒前
午凌二完成签到,获得积分10
1秒前
2秒前
3秒前
Lychee完成签到 ,获得积分10
4秒前
HMethod完成签到 ,获得积分10
4秒前
小胖发布了新的文献求助10
4秒前
5秒前
SCI66发布了新的文献求助30
5秒前
nessa发布了新的文献求助10
7秒前
爆米花应助CRUISE采纳,获得10
8秒前
木悠发布了新的文献求助10
9秒前
壮观人达完成签到,获得积分10
9秒前
LDoll完成签到,获得积分10
10秒前
桃子e完成签到,获得积分10
10秒前
Lee发布了新的文献求助10
12秒前
13秒前
lt发布了新的文献求助10
14秒前
Lqian_Yu完成签到 ,获得积分10
15秒前
SCI66完成签到,获得积分10
18秒前
小胖发布了新的文献求助10
19秒前
Glufo完成签到,获得积分10
20秒前
英姑应助小慧儿采纳,获得10
21秒前
22秒前
领导范儿应助科研通管家采纳,获得10
23秒前
千千沐发布了新的文献求助10
23秒前
Lee完成签到,获得积分10
23秒前
light发布了新的文献求助50
24秒前
qwer发布了新的文献求助50
25秒前
25秒前
优秀的元龙完成签到,获得积分10
27秒前
30秒前
碧蓝平露发布了新的文献求助10
30秒前
凶狠的飞凤完成签到,获得积分10
31秒前
SBoot完成签到,获得积分10
31秒前
32秒前
HAAAPY完成签到,获得积分20
35秒前
keikei发布了新的文献求助10
36秒前
gxc发布了新的文献求助10
37秒前
mao完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872826
求助须知:如何正确求助?哪些是违规求助? 6492621
关于积分的说明 15670004
捐赠科研通 4990251
什么是DOI,文献DOI怎么找? 2690186
邀请新用户注册赠送积分活动 1632687
关于科研通互助平台的介绍 1590578