Classification of melanoma images using 2D multifractal detrended cross-correlation analysis

支持向量机 模式识别(心理学) 人工智能 计算机科学 多重分形系统 分类器(UML) 去趋势波动分析 相关性 赫斯特指数 皮肤癌 分形 数学 癌症 统计 医学 数学分析 几何学 缩放比例 内科学
作者
Jian Wang,Yan Yan,Junseok Kim
出处
期刊:Modern Physics Letters B [World Scientific]
卷期号:36 (09) 被引量:3
标识
DOI:10.1142/s0217984921506193
摘要

Skin cancer is a common human malignant tumor and melanoma is one of the most fatal diseases in skin cancer. There exists a high degree of visual similarity between melanoma and non-melanoma. In addition, the acquisition and labeling of skin cancer images need relevant medical knowledge, therefore, it is difficult to obtain natural images. These problems make it difficult to distinguish between melanoma and non-melanoma. How to extract the high-dimensional features of skin cancer images is the main problem to improve the classification performance of skin cancer images. For this purpose, we propose a new computer-aided classification system with a two-dimensional (2D) multifractal detrended fluctuation analysis (MF-DCCA) method and classifier combination. The proposed 2D MF-DCCA is expanded by the 2D MF-DFA and we aim to change the distribution of the generalized Hurst exponents calculated by the original 2D MF-DFA, making the image features represented by the generalized Hurst exponents calculated by 2D MF-DCCA are more significant. Therefore, we take the generalized Hurst exponents calculated by the two methods into the classifier and evaluate their classification performance. The classification metrics, such as Accuracy (Acc), Sensitivity (Sen), and Specificity (Spe) of two classifiers, show that the features extracted by MF-DCCA are better than those by MF-DFA. In addition, among the two classifiers such as the SVM and k-NN, the k-NN performs best in Acc and Spe with [Formula: see text] and [Formula: see text], respectively. The k-NN performs better than SVM in the classification Sen with [Formula: see text].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AHND完成签到 ,获得积分10
刚刚
ARIA发布了新的文献求助10
1秒前
undo发布了新的文献求助10
2秒前
LS发布了新的文献求助10
2秒前
木子川发布了新的文献求助10
2秒前
吴彦祖应助张姐采纳,获得10
3秒前
852应助张姐采纳,获得10
3秒前
李爱国应助韩雪霞采纳,获得10
3秒前
4秒前
强哥完成签到,获得积分10
5秒前
HuLL发布了新的文献求助10
5秒前
xxfsx应助范棒棒采纳,获得10
6秒前
CodeCraft应助范棒棒采纳,获得10
6秒前
二三完成签到,获得积分10
6秒前
6秒前
xxfsx应助王哲采纳,获得10
6秒前
海之恋心完成签到 ,获得积分10
7秒前
科研通AI2S应助undo采纳,获得10
8秒前
8秒前
慧子完成签到,获得积分10
8秒前
jhgfjkhgkjbjb完成签到 ,获得积分10
9秒前
朵朵呀哈哈完成签到,获得积分10
9秒前
10秒前
美羊羊发布了新的文献求助10
10秒前
meizu发布了新的文献求助10
10秒前
11秒前
P88JNG发布了新的文献求助10
11秒前
11秒前
顾矜应助奥润之采纳,获得10
12秒前
科研通AI6应助茂飞采纳,获得10
13秒前
jiaminzhao完成签到,获得积分10
13秒前
寒山发布了新的文献求助10
14秒前
16秒前
16秒前
聪慧代芹发布了新的文献求助10
16秒前
17秒前
SCIGGG完成签到,获得积分10
17秒前
完美世界应助YUJIALING采纳,获得10
17秒前
CipherSage应助野性的小珍采纳,获得10
18秒前
清欢发布了新的文献求助30
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458013
求助须知:如何正确求助?哪些是违规求助? 4564174
关于积分的说明 14293855
捐赠科研通 4488953
什么是DOI,文献DOI怎么找? 2458832
邀请新用户注册赠送积分活动 1448742
关于科研通互助平台的介绍 1424403