亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards Performant and Reliable Undersampled MR Reconstruction via Diffusion Model Sampling

计算机科学 杠杆(统计) 人工智能 迭代重建 蒙特卡罗方法 加速度 可靠性(半导体) 采样(信号处理) 算法 计算机视觉 数学 功率(物理) 物理 滤波器(信号处理) 统计 经典力学 量子力学
作者
Perry Cheng,Ping Guo,S. Kevin Zhou,Vishal M. Patel,Rama Chellappa
出处
期刊:Lecture Notes in Computer Science 卷期号:: 623-633 被引量:19
标识
DOI:10.1007/978-3-031-16446-0_59
摘要

Magnetic Resonance (MR) image reconstruction from under-sampled acquisition promises faster scanning time. To this end, current State-of-The-Art (SoTA) approaches leverage deep neural networks and supervised training to learn a recovery model. While these approaches achieve impressive performances, the learned model can be fragile on unseen degradation, e.g. when given a different acceleration factor. These methods are also generally deterministic and provide a single solution to an ill-posed problem; as such, it can be difficult for practitioners to understand the reliability of the reconstruction. We introduce DiffuseRecon, a novel diffusion model-based MR reconstruction method. DiffuseRecon guides the generation process based on the observed signals and a pre-trained diffusion model, and does not require additional training on specific acceleration factors. DiffuseRecon is stochastic in nature and generates results from a distribution of fully-sampled MR images; as such, it allows us to explicitly visualize different potential reconstruction solutions. Lastly, DiffuseRecon proposes an accelerated, coarse-to-fine Monte-Carlo sampling scheme to approximate the most likely reconstruction candidate. The proposed DiffuseRecon achieves SoTA performances reconstructing from raw acquisition signals in fastMRI and SKM-TEA. Code will be open-sourced at www.github.com/cpeng93/DiffuseRecon .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
2秒前
17秒前
上官若男应助石榴汁的书采纳,获得10
18秒前
34秒前
38秒前
momoko180发布了新的文献求助10
39秒前
59秒前
1分钟前
xxx完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
天天快乐应助momoko180采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
Orange应助经钧采纳,获得10
2分钟前
waleedo2020发布了新的文献求助10
3分钟前
waleedo2020完成签到,获得积分10
3分钟前
3分钟前
燕燕于飞完成签到,获得积分10
3分钟前
4分钟前
orixero应助Marciu33采纳,获得10
4分钟前
4分钟前
4分钟前
经钧发布了新的文献求助10
4分钟前
斯文败类应助科研小趴菜采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
小倒霉蛋完成签到 ,获得积分10
5分钟前
胡可完成签到 ,获得积分10
5分钟前
领导范儿应助高高的绿蓉采纳,获得30
5分钟前
微卫星不稳定完成签到 ,获得积分0
5分钟前
5分钟前
高高的绿蓉完成签到,获得积分10
5分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418344
求助须知:如何正确求助?哪些是违规求助? 4534108
关于积分的说明 14143089
捐赠科研通 4450330
什么是DOI,文献DOI怎么找? 2441161
邀请新用户注册赠送积分活动 1432939
关于科研通互助平台的介绍 1410269