亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards Performant and Reliable Undersampled MR Reconstruction via Diffusion Model Sampling

计算机科学 杠杆(统计) 人工智能 迭代重建 蒙特卡罗方法 加速度 可靠性(半导体) 采样(信号处理) 算法 计算机视觉 数学 功率(物理) 统计 物理 滤波器(信号处理) 经典力学 量子力学
作者
Perry Cheng,Ping Guo,S. Kevin Zhou,Vishal M. Patel,Rama Chellappa
出处
期刊:Lecture Notes in Computer Science 卷期号:: 623-633 被引量:19
标识
DOI:10.1007/978-3-031-16446-0_59
摘要

Magnetic Resonance (MR) image reconstruction from under-sampled acquisition promises faster scanning time. To this end, current State-of-The-Art (SoTA) approaches leverage deep neural networks and supervised training to learn a recovery model. While these approaches achieve impressive performances, the learned model can be fragile on unseen degradation, e.g. when given a different acceleration factor. These methods are also generally deterministic and provide a single solution to an ill-posed problem; as such, it can be difficult for practitioners to understand the reliability of the reconstruction. We introduce DiffuseRecon, a novel diffusion model-based MR reconstruction method. DiffuseRecon guides the generation process based on the observed signals and a pre-trained diffusion model, and does not require additional training on specific acceleration factors. DiffuseRecon is stochastic in nature and generates results from a distribution of fully-sampled MR images; as such, it allows us to explicitly visualize different potential reconstruction solutions. Lastly, DiffuseRecon proposes an accelerated, coarse-to-fine Monte-Carlo sampling scheme to approximate the most likely reconstruction candidate. The proposed DiffuseRecon achieves SoTA performances reconstructing from raw acquisition signals in fastMRI and SKM-TEA. Code will be open-sourced at www.github.com/cpeng93/DiffuseRecon .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_ngqgY8完成签到,获得积分10
6秒前
JamesPei应助温暖的乐蓉采纳,获得10
10秒前
10秒前
郭楠楠发布了新的文献求助10
16秒前
17秒前
比格大王应助badyoungboy采纳,获得10
18秒前
江经纬完成签到,获得积分20
25秒前
顾矜应助郭楠楠采纳,获得10
34秒前
49秒前
54秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
隐形不凡完成签到,获得积分10
1分钟前
温暖的乐蓉关注了科研通微信公众号
1分钟前
李桂芳完成签到,获得积分10
1分钟前
1分钟前
急诊守夜人完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
robin完成签到 ,获得积分10
2分钟前
万能图书馆应助HH采纳,获得10
2分钟前
吾日三省吾身完成签到 ,获得积分10
2分钟前
英姑应助风华正茂采纳,获得10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得50
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Lulu发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
HH发布了新的文献求助10
3分钟前
Lulu完成签到,获得积分10
3分钟前
Yuki完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664330
求助须知:如何正确求助?哪些是违规求助? 4860894
关于积分的说明 15107549
捐赠科研通 4822849
什么是DOI,文献DOI怎么找? 2581773
邀请新用户注册赠送积分活动 1535993
关于科研通互助平台的介绍 1494287