Towards Performant and Reliable Undersampled MR Reconstruction via Diffusion Model Sampling

计算机科学 杠杆(统计) 人工智能 迭代重建 蒙特卡罗方法 加速度 可靠性(半导体) 采样(信号处理) 算法 计算机视觉 数学 功率(物理) 统计 物理 滤波器(信号处理) 经典力学 量子力学
作者
Perry Cheng,Ping Guo,S. Kevin Zhou,Vishal M. Patel,Rama Chellappa
出处
期刊:Lecture Notes in Computer Science 卷期号:: 623-633 被引量:19
标识
DOI:10.1007/978-3-031-16446-0_59
摘要

Magnetic Resonance (MR) image reconstruction from under-sampled acquisition promises faster scanning time. To this end, current State-of-The-Art (SoTA) approaches leverage deep neural networks and supervised training to learn a recovery model. While these approaches achieve impressive performances, the learned model can be fragile on unseen degradation, e.g. when given a different acceleration factor. These methods are also generally deterministic and provide a single solution to an ill-posed problem; as such, it can be difficult for practitioners to understand the reliability of the reconstruction. We introduce DiffuseRecon, a novel diffusion model-based MR reconstruction method. DiffuseRecon guides the generation process based on the observed signals and a pre-trained diffusion model, and does not require additional training on specific acceleration factors. DiffuseRecon is stochastic in nature and generates results from a distribution of fully-sampled MR images; as such, it allows us to explicitly visualize different potential reconstruction solutions. Lastly, DiffuseRecon proposes an accelerated, coarse-to-fine Monte-Carlo sampling scheme to approximate the most likely reconstruction candidate. The proposed DiffuseRecon achieves SoTA performances reconstructing from raw acquisition signals in fastMRI and SKM-TEA. Code will be open-sourced at www.github.com/cpeng93/DiffuseRecon .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助干饭搞科研采纳,获得30
刚刚
刚刚
刚刚
DJ发布了新的文献求助30
刚刚
柯学家完成签到,获得积分10
1秒前
1秒前
小鹿发布了新的文献求助10
2秒前
2秒前
在望发布了新的文献求助10
2秒前
复杂平凡完成签到,获得积分10
2秒前
HaitaoLiu关注了科研通微信公众号
2秒前
2秒前
阿刁发布了新的文献求助10
3秒前
gc529发布了新的文献求助10
3秒前
3秒前
AOWAIIENG发布了新的文献求助10
4秒前
4秒前
搁浅发布了新的文献求助10
5秒前
Lily发布了新的文献求助10
5秒前
5秒前
隐形静芙发布了新的文献求助10
5秒前
6秒前
6秒前
Maxw发布了新的文献求助30
6秒前
6秒前
su123发布了新的文献求助10
6秒前
6秒前
7秒前
穆思柔完成签到,获得积分10
7秒前
科研通AI5应助英俊柠檬采纳,获得10
7秒前
peanut发布了新的文献求助10
7秒前
科研通AI6应助小咩采纳,获得10
8秒前
8秒前
9秒前
丘比特应助Li采纳,获得10
9秒前
元谷雪发布了新的文献求助10
10秒前
甜美白昼完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576795
求助须知:如何正确求助?哪些是违规求助? 3995951
关于积分的说明 12370915
捐赠科研通 3670012
什么是DOI,文献DOI怎么找? 2022527
邀请新用户注册赠送积分活动 1056628
科研通“疑难数据库(出版商)”最低求助积分说明 943794