Multisensory data fusion-based deep learning approach for fault diagnosis of an industrial autonomous transfer vehicle

计算机科学 深度学习 传感器融合 融合 人工智能 断层(地质) 学习迁移 机器学习 哲学 语言学 地震学 地质学
作者
Özgür Gültekin,E. Mine Çinar,Kemal Özkan,Ahmet Yazıcı
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:200: 117055-117055 被引量:46
标识
DOI:10.1016/j.eswa.2022.117055
摘要

The integration of Industry 4.0 concepts into today’s manufacturing settings has introduced new technology tools that have already started providing companies an increased level of efficiency in certain operations. Autonomous Transfer Vehicles (ATV) are one of these new tools that are popular in today’s manufacturing settings. As these tools become an integral part of the manufacturing ecosystem, accurate diagnosis of ATV faults and anomalies will also be crucial in manufacturing settings. Similar to any other intelligent detection of machinery faults, analyzing and utilizing signals measured from attached ATV sensors may reveal any uncovered operational faults or critical operational/safety concerns. In this context, this paper focuses on an intelligent fault detection of an ATV tool utilizing signals measured from multiple attached sensors. A novel Convolutional Neural Network-based data fusion approach, utilizing short time Fourier Transform, is proposed for the detection and identification of operational faults occurring in an ATV. The approach is tested on an experimental dataset, consisting of two motors’ sound and vibration signals, collected as an ATV operates for a specific task under three different conditions. The diagnosis results indicate that the proposed deep learning-based multisensory fault diagnosis approach is able to diagnose operational conditions with significantly high accuracy compared to single or dual sensor approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zy完成签到 ,获得积分10
刚刚
Qps发布了新的文献求助10
1秒前
友好雪枫完成签到,获得积分10
1秒前
jrzsy完成签到,获得积分10
2秒前
千叶儿发布了新的文献求助10
3秒前
3秒前
3秒前
叨叨发布了新的文献求助20
3秒前
4秒前
4秒前
今后应助sssssss采纳,获得10
5秒前
5秒前
姚龙完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
pluto应助稳重的秋天采纳,获得10
6秒前
7秒前
Yiran发布了新的文献求助10
8秒前
biequnyi完成签到,获得积分10
8秒前
李健的粉丝团团长应助Lmey采纳,获得10
9秒前
wayne完成签到 ,获得积分10
9秒前
木香发布了新的文献求助10
9秒前
一一发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
yyy0820完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
13秒前
13秒前
13秒前
14秒前
可可完成签到,获得积分10
14秒前
sys549应助yanni采纳,获得50
14秒前
清秀的小狗完成签到,获得积分10
15秒前
11111完成签到,获得积分20
15秒前
八万发布了新的文献求助10
15秒前
快乐的云关注了科研通微信公众号
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207