Multisensory data fusion-based deep learning approach for fault diagnosis of an industrial autonomous transfer vehicle

计算机科学 深度学习 传感器融合 融合 人工智能 断层(地质) 学习迁移 机器学习 哲学 语言学 地震学 地质学
作者
Özgür Gültekin,E. Mine Çinar,Kemal Özkan,Ahmet Yazıcı
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:200: 117055-117055 被引量:46
标识
DOI:10.1016/j.eswa.2022.117055
摘要

The integration of Industry 4.0 concepts into today’s manufacturing settings has introduced new technology tools that have already started providing companies an increased level of efficiency in certain operations. Autonomous Transfer Vehicles (ATV) are one of these new tools that are popular in today’s manufacturing settings. As these tools become an integral part of the manufacturing ecosystem, accurate diagnosis of ATV faults and anomalies will also be crucial in manufacturing settings. Similar to any other intelligent detection of machinery faults, analyzing and utilizing signals measured from attached ATV sensors may reveal any uncovered operational faults or critical operational/safety concerns. In this context, this paper focuses on an intelligent fault detection of an ATV tool utilizing signals measured from multiple attached sensors. A novel Convolutional Neural Network-based data fusion approach, utilizing short time Fourier Transform, is proposed for the detection and identification of operational faults occurring in an ATV. The approach is tested on an experimental dataset, consisting of two motors’ sound and vibration signals, collected as an ATV operates for a specific task under three different conditions. The diagnosis results indicate that the proposed deep learning-based multisensory fault diagnosis approach is able to diagnose operational conditions with significantly high accuracy compared to single or dual sensor approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
务实的清发布了新的文献求助10
刚刚
玛卡发布了新的文献求助10
刚刚
内向凌波完成签到 ,获得积分10
刚刚
内向凌波完成签到 ,获得积分10
刚刚
karL完成签到,获得积分10
1秒前
小蘑菇应助IIIKERUI采纳,获得10
1秒前
1秒前
三七二一发布了新的文献求助10
1秒前
。.。发布了新的文献求助10
2秒前
wl20130000完成签到,获得积分10
3秒前
英俊的铭应助lxzhou采纳,获得10
3秒前
专一的抽屉完成签到,获得积分10
3秒前
番茄大王开心心完成签到,获得积分10
3秒前
4秒前
moumou发布了新的文献求助10
4秒前
科研通AI2S应助自信胡萝卜采纳,获得10
4秒前
慕青应助darling采纳,获得10
4秒前
Orange应助lili采纳,获得10
5秒前
adou发布了新的文献求助10
6秒前
传奇3应助maliao采纳,获得30
6秒前
6秒前
斯文败类应助远古遗迹采纳,获得30
6秒前
wanzixian发布了新的文献求助10
6秒前
DONG完成签到,获得积分10
7秒前
ding应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
比奇堡派大星完成签到 ,获得积分20
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
天天快乐应助687采纳,获得10
8秒前
豆芽完成签到 ,获得积分10
8秒前
马尔斯完成签到,获得积分10
9秒前
田様应助单身的老三采纳,获得10
10秒前
DONG发布了新的文献求助10
10秒前
10秒前
MXX完成签到 ,获得积分10
10秒前
n0way完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572176
求助须知:如何正确求助?哪些是违规求助? 4657440
关于积分的说明 14720306
捐赠科研通 4598129
什么是DOI,文献DOI怎么找? 2523579
邀请新用户注册赠送积分活动 1494346
关于科研通互助平台的介绍 1464433