Multisensory data fusion-based deep learning approach for fault diagnosis of an industrial autonomous transfer vehicle

计算机科学 深度学习 传感器融合 融合 人工智能 断层(地质) 学习迁移 机器学习 哲学 语言学 地震学 地质学
作者
Özgür Gültekin,E. Mine Çinar,Kemal Özkan,Ahmet Yazıcı
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:200: 117055-117055 被引量:46
标识
DOI:10.1016/j.eswa.2022.117055
摘要

The integration of Industry 4.0 concepts into today’s manufacturing settings has introduced new technology tools that have already started providing companies an increased level of efficiency in certain operations. Autonomous Transfer Vehicles (ATV) are one of these new tools that are popular in today’s manufacturing settings. As these tools become an integral part of the manufacturing ecosystem, accurate diagnosis of ATV faults and anomalies will also be crucial in manufacturing settings. Similar to any other intelligent detection of machinery faults, analyzing and utilizing signals measured from attached ATV sensors may reveal any uncovered operational faults or critical operational/safety concerns. In this context, this paper focuses on an intelligent fault detection of an ATV tool utilizing signals measured from multiple attached sensors. A novel Convolutional Neural Network-based data fusion approach, utilizing short time Fourier Transform, is proposed for the detection and identification of operational faults occurring in an ATV. The approach is tested on an experimental dataset, consisting of two motors’ sound and vibration signals, collected as an ATV operates for a specific task under three different conditions. The diagnosis results indicate that the proposed deep learning-based multisensory fault diagnosis approach is able to diagnose operational conditions with significantly high accuracy compared to single or dual sensor approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Merry发布了新的文献求助10
刚刚
1秒前
叶远望发布了新的文献求助10
1秒前
hklong完成签到,获得积分10
1秒前
1秒前
hht发布了新的文献求助10
1秒前
一昂杨完成签到,获得积分10
1秒前
宁静致远完成签到,获得积分10
1秒前
毛球收藏家完成签到,获得积分10
1秒前
ronnie发布了新的文献求助10
2秒前
orixero应助yyj采纳,获得10
2秒前
老福贵儿应助眼睛大凤采纳,获得10
2秒前
呆黄发布了新的文献求助20
3秒前
Ava应助听话的青荷采纳,获得10
3秒前
简诞完成签到,获得积分10
3秒前
3秒前
在途中发布了新的文献求助10
4秒前
Hello应助第七个星球采纳,获得10
4秒前
4秒前
4秒前
slkjdz完成签到,获得积分10
4秒前
Angew来来来完成签到,获得积分10
4秒前
xiaxia完成签到,获得积分20
4秒前
雪七关注了科研通微信公众号
5秒前
Orange应助LSH慧采纳,获得10
5秒前
zz应助仁爱的野狼采纳,获得10
6秒前
深情安青应助仁爱的野狼采纳,获得10
6秒前
Hello应助仁爱的野狼采纳,获得10
6秒前
共享精神应助仁爱的野狼采纳,获得10
6秒前
Hello应助仁爱的野狼采纳,获得10
6秒前
wanci应助仁爱的野狼采纳,获得30
6秒前
wakeeeeeee完成签到,获得积分10
6秒前
任性枕头完成签到,获得积分10
6秒前
LisA__完成签到,获得积分10
7秒前
无极微光应助科克采纳,获得20
7秒前
Hello应助宁宁采纳,获得10
7秒前
CipherSage应助饱满从蕾采纳,获得10
7秒前
云1发布了新的文献求助10
7秒前
7秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647530
求助须知:如何正确求助?哪些是违规求助? 4773705
关于积分的说明 15039847
捐赠科研通 4806303
什么是DOI,文献DOI怎么找? 2570208
邀请新用户注册赠送积分活动 1527046
关于科研通互助平台的介绍 1486132