Multisensory data fusion-based deep learning approach for fault diagnosis of an industrial autonomous transfer vehicle

计算机科学 深度学习 传感器融合 融合 人工智能 断层(地质) 学习迁移 机器学习 哲学 语言学 地震学 地质学
作者
Özgür Gültekin,E. Mine Çinar,Kemal Özkan,Ahmet Yazıcı
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:200: 117055-117055 被引量:46
标识
DOI:10.1016/j.eswa.2022.117055
摘要

The integration of Industry 4.0 concepts into today’s manufacturing settings has introduced new technology tools that have already started providing companies an increased level of efficiency in certain operations. Autonomous Transfer Vehicles (ATV) are one of these new tools that are popular in today’s manufacturing settings. As these tools become an integral part of the manufacturing ecosystem, accurate diagnosis of ATV faults and anomalies will also be crucial in manufacturing settings. Similar to any other intelligent detection of machinery faults, analyzing and utilizing signals measured from attached ATV sensors may reveal any uncovered operational faults or critical operational/safety concerns. In this context, this paper focuses on an intelligent fault detection of an ATV tool utilizing signals measured from multiple attached sensors. A novel Convolutional Neural Network-based data fusion approach, utilizing short time Fourier Transform, is proposed for the detection and identification of operational faults occurring in an ATV. The approach is tested on an experimental dataset, consisting of two motors’ sound and vibration signals, collected as an ATV operates for a specific task under three different conditions. The diagnosis results indicate that the proposed deep learning-based multisensory fault diagnosis approach is able to diagnose operational conditions with significantly high accuracy compared to single or dual sensor approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aom发布了新的文献求助10
刚刚
Zx_1993应助加勒比海带采纳,获得10
刚刚
1秒前
zila完成签到,获得积分10
1秒前
木木完成签到,获得积分10
1秒前
咸鱼发布了新的文献求助10
1秒前
哈哈哈大赞完成签到,获得积分10
2秒前
YWJ发布了新的文献求助10
2秒前
2秒前
张一亦可完成签到,获得积分10
2秒前
2秒前
鲁鱼完成签到,获得积分10
2秒前
NingZH发布了新的文献求助10
2秒前
王杰秀发布了新的文献求助10
2秒前
3秒前
灵巧山菡完成签到,获得积分10
3秒前
3秒前
CuCu发布了新的文献求助10
3秒前
默默善愁发布了新的文献求助10
4秒前
mojojo发布了新的文献求助10
4秒前
木木发布了新的文献求助10
4秒前
晓晖完成签到,获得积分10
4秒前
copper发布了新的文献求助10
5秒前
5秒前
6秒前
yeeming发布了新的文献求助30
6秒前
6秒前
selfevidbet完成签到,获得积分10
6秒前
cccr完成签到,获得积分20
7秒前
7秒前
进击的momo完成签到,获得积分10
7秒前
大大发布了新的文献求助10
7秒前
wensri完成签到,获得积分10
8秒前
科研通AI6应助可靠雪雪采纳,获得10
8秒前
白沙叶发布了新的文献求助10
8秒前
王小树完成签到,获得积分10
8秒前
愤怒的小鸟完成签到,获得积分10
8秒前
9秒前
lzc发布了新的文献求助10
9秒前
调皮的涵易完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525966
求助须知:如何正确求助?哪些是违规求助? 4616113
关于积分的说明 14551945
捐赠科研通 4554358
什么是DOI,文献DOI怎么找? 2495803
邀请新用户注册赠送积分活动 1476217
关于科研通互助平台的介绍 1447879