清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multisensory data fusion-based deep learning approach for fault diagnosis of an industrial autonomous transfer vehicle

计算机科学 深度学习 传感器融合 融合 人工智能 断层(地质) 学习迁移 机器学习 哲学 语言学 地震学 地质学
作者
Özgür Gültekin,E. Mine Çinar,Kemal Özkan,Ahmet Yazıcı
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:200: 117055-117055 被引量:46
标识
DOI:10.1016/j.eswa.2022.117055
摘要

The integration of Industry 4.0 concepts into today’s manufacturing settings has introduced new technology tools that have already started providing companies an increased level of efficiency in certain operations. Autonomous Transfer Vehicles (ATV) are one of these new tools that are popular in today’s manufacturing settings. As these tools become an integral part of the manufacturing ecosystem, accurate diagnosis of ATV faults and anomalies will also be crucial in manufacturing settings. Similar to any other intelligent detection of machinery faults, analyzing and utilizing signals measured from attached ATV sensors may reveal any uncovered operational faults or critical operational/safety concerns. In this context, this paper focuses on an intelligent fault detection of an ATV tool utilizing signals measured from multiple attached sensors. A novel Convolutional Neural Network-based data fusion approach, utilizing short time Fourier Transform, is proposed for the detection and identification of operational faults occurring in an ATV. The approach is tested on an experimental dataset, consisting of two motors’ sound and vibration signals, collected as an ATV operates for a specific task under three different conditions. The diagnosis results indicate that the proposed deep learning-based multisensory fault diagnosis approach is able to diagnose operational conditions with significantly high accuracy compared to single or dual sensor approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
米修完成签到,获得积分20
12秒前
CodeCraft应助居家小可采纳,获得10
17秒前
28秒前
苗苗发布了新的文献求助10
32秒前
46秒前
苗苗完成签到 ,获得积分10
47秒前
loathebm发布了新的文献求助10
49秒前
NexusExplorer应助loathebm采纳,获得10
1分钟前
灿烂而孤独的八戒完成签到 ,获得积分10
1分钟前
1分钟前
居家小可发布了新的文献求助10
1分钟前
我睡觉的时候不困完成签到 ,获得积分10
1分钟前
居家小可完成签到,获得积分10
1分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
2分钟前
如歌完成签到,获得积分10
2分钟前
不羁之魂完成签到,获得积分10
2分钟前
3分钟前
3分钟前
飞快的孱发布了新的文献求助10
3分钟前
CYT完成签到,获得积分10
3分钟前
chenlc971125完成签到 ,获得积分10
5分钟前
科研通AI5应助义气的含烟采纳,获得10
5分钟前
5分钟前
5分钟前
义气的含烟完成签到,获得积分10
5分钟前
嘻嘻完成签到,获得积分10
7分钟前
Fairy完成签到,获得积分10
8分钟前
夏日香气完成签到 ,获得积分10
8分钟前
Ava应助pepper采纳,获得10
9分钟前
大模型应助科研通管家采纳,获得10
9分钟前
9分钟前
9分钟前
咯咯咯完成签到 ,获得积分10
10分钟前
10分钟前
飞快的孱发布了新的文献求助10
11分钟前
Jasper应助科研通管家采纳,获得10
11分钟前
pepper完成签到,获得积分20
11分钟前
12分钟前
飞快的孱发布了新的文献求助10
12分钟前
pepper发布了新的文献求助10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582490
求助须知:如何正确求助?哪些是违规求助? 4000216
关于积分的说明 12382261
捐赠科研通 3675224
什么是DOI,文献DOI怎么找? 2025756
邀请新用户注册赠送积分活动 1059394
科研通“疑难数据库(出版商)”最低求助积分说明 946082