亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multisensory data fusion-based deep learning approach for fault diagnosis of an industrial autonomous transfer vehicle

计算机科学 深度学习 传感器融合 融合 人工智能 断层(地质) 学习迁移 机器学习 哲学 语言学 地震学 地质学
作者
Özgür Gültekin,E. Mine Çinar,Kemal Özkan,Ahmet Yazıcı
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:200: 117055-117055 被引量:46
标识
DOI:10.1016/j.eswa.2022.117055
摘要

The integration of Industry 4.0 concepts into today’s manufacturing settings has introduced new technology tools that have already started providing companies an increased level of efficiency in certain operations. Autonomous Transfer Vehicles (ATV) are one of these new tools that are popular in today’s manufacturing settings. As these tools become an integral part of the manufacturing ecosystem, accurate diagnosis of ATV faults and anomalies will also be crucial in manufacturing settings. Similar to any other intelligent detection of machinery faults, analyzing and utilizing signals measured from attached ATV sensors may reveal any uncovered operational faults or critical operational/safety concerns. In this context, this paper focuses on an intelligent fault detection of an ATV tool utilizing signals measured from multiple attached sensors. A novel Convolutional Neural Network-based data fusion approach, utilizing short time Fourier Transform, is proposed for the detection and identification of operational faults occurring in an ATV. The approach is tested on an experimental dataset, consisting of two motors’ sound and vibration signals, collected as an ATV operates for a specific task under three different conditions. The diagnosis results indicate that the proposed deep learning-based multisensory fault diagnosis approach is able to diagnose operational conditions with significantly high accuracy compared to single or dual sensor approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
舒适博超完成签到,获得积分10
3秒前
CNC完成签到 ,获得积分10
3秒前
5秒前
5秒前
TEDDY完成签到,获得积分10
6秒前
善学以致用应助123采纳,获得10
7秒前
子訡完成签到 ,获得积分10
18秒前
24秒前
NexusExplorer应助金沐栋采纳,获得10
24秒前
123发布了新的文献求助10
28秒前
浮游应助火星上向珊采纳,获得10
29秒前
杨泽宇给杨泽宇的求助进行了留言
33秒前
无花果应助科研通管家采纳,获得10
34秒前
烟花应助123采纳,获得10
1分钟前
1分钟前
ataybabdallah发布了新的文献求助10
1分钟前
1分钟前
踏实白柏发布了新的文献求助10
1分钟前
今后应助踏实白柏采纳,获得10
1分钟前
ataybabdallah发布了新的文献求助30
2分钟前
2分钟前
杨泽宇发布了新的文献求助10
2分钟前
2分钟前
大个应助张123采纳,获得10
2分钟前
Ava应助ataybabdallah采纳,获得10
2分钟前
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
张123发布了新的文献求助10
2分钟前
活力广缘完成签到,获得积分10
2分钟前
慕青应助超级小卢采纳,获得10
2分钟前
2分钟前
超级小卢发布了新的文献求助10
2分钟前
Stamina678完成签到,获得积分10
2分钟前
超级小卢完成签到,获得积分10
3分钟前
魏欣娜发布了新的文献求助10
3分钟前
una完成签到 ,获得积分10
3分钟前
张123完成签到,获得积分10
3分钟前
Hello应助WanchengHu采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476333
求助须知:如何正确求助?哪些是违规求助? 4578009
关于积分的说明 14363307
捐赠科研通 4505917
什么是DOI,文献DOI怎么找? 2468931
邀请新用户注册赠送积分活动 1456508
关于科研通互助平台的介绍 1430196