Multisensory data fusion-based deep learning approach for fault diagnosis of an industrial autonomous transfer vehicle

计算机科学 深度学习 传感器融合 融合 人工智能 断层(地质) 学习迁移 机器学习 哲学 语言学 地震学 地质学
作者
Özgür Gültekin,E. Mine Çinar,Kemal Özkan,Ahmet Yazıcı
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:200: 117055-117055 被引量:46
标识
DOI:10.1016/j.eswa.2022.117055
摘要

The integration of Industry 4.0 concepts into today’s manufacturing settings has introduced new technology tools that have already started providing companies an increased level of efficiency in certain operations. Autonomous Transfer Vehicles (ATV) are one of these new tools that are popular in today’s manufacturing settings. As these tools become an integral part of the manufacturing ecosystem, accurate diagnosis of ATV faults and anomalies will also be crucial in manufacturing settings. Similar to any other intelligent detection of machinery faults, analyzing and utilizing signals measured from attached ATV sensors may reveal any uncovered operational faults or critical operational/safety concerns. In this context, this paper focuses on an intelligent fault detection of an ATV tool utilizing signals measured from multiple attached sensors. A novel Convolutional Neural Network-based data fusion approach, utilizing short time Fourier Transform, is proposed for the detection and identification of operational faults occurring in an ATV. The approach is tested on an experimental dataset, consisting of two motors’ sound and vibration signals, collected as an ATV operates for a specific task under three different conditions. The diagnosis results indicate that the proposed deep learning-based multisensory fault diagnosis approach is able to diagnose operational conditions with significantly high accuracy compared to single or dual sensor approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助积雨云采纳,获得30
刚刚
积极问晴发布了新的文献求助10
1秒前
Owen应助sty采纳,获得10
2秒前
在水一方应助11采纳,获得10
2秒前
3秒前
闫上走完成签到,获得积分10
4秒前
JamesPei应助aaa采纳,获得10
5秒前
小六子发布了新的文献求助10
5秒前
在水一方应助松林采纳,获得10
5秒前
平淡的谷兰完成签到 ,获得积分10
6秒前
Steplan完成签到,获得积分10
8秒前
9秒前
情怀应助Master采纳,获得10
10秒前
10秒前
11秒前
11秒前
12秒前
alpha完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
13秒前
xingxing完成签到,获得积分10
14秒前
zzt发布了新的文献求助10
14秒前
11发布了新的文献求助10
15秒前
16秒前
现代书雪发布了新的文献求助10
16秒前
希望天下0贩的0应助kiki采纳,获得50
16秒前
lyh发布了新的文献求助10
17秒前
18秒前
糟糕的学姐完成签到,获得积分10
19秒前
学术小白发布了新的文献求助10
20秒前
小狗黑头完成签到,获得积分10
22秒前
风清扬应助绒绒采纳,获得30
22秒前
22秒前
23秒前
所所应助AAA建材王哥采纳,获得10
24秒前
24秒前
希望天下0贩的0应助HAFun采纳,获得10
24秒前
新能源发布了新的文献求助10
26秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627069
求助须知:如何正确求助?哪些是违规求助? 4712976
关于积分的说明 14961029
捐赠科研通 4783415
什么是DOI,文献DOI怎么找? 2554637
邀请新用户注册赠送积分活动 1516274
关于科研通互助平台的介绍 1476543