Multisensory data fusion-based deep learning approach for fault diagnosis of an industrial autonomous transfer vehicle

计算机科学 深度学习 传感器融合 融合 人工智能 断层(地质) 学习迁移 机器学习 哲学 语言学 地震学 地质学
作者
Özgür Gültekin,E. Mine Çinar,Kemal Özkan,Ahmet Yazıcı
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:200: 117055-117055 被引量:46
标识
DOI:10.1016/j.eswa.2022.117055
摘要

The integration of Industry 4.0 concepts into today’s manufacturing settings has introduced new technology tools that have already started providing companies an increased level of efficiency in certain operations. Autonomous Transfer Vehicles (ATV) are one of these new tools that are popular in today’s manufacturing settings. As these tools become an integral part of the manufacturing ecosystem, accurate diagnosis of ATV faults and anomalies will also be crucial in manufacturing settings. Similar to any other intelligent detection of machinery faults, analyzing and utilizing signals measured from attached ATV sensors may reveal any uncovered operational faults or critical operational/safety concerns. In this context, this paper focuses on an intelligent fault detection of an ATV tool utilizing signals measured from multiple attached sensors. A novel Convolutional Neural Network-based data fusion approach, utilizing short time Fourier Transform, is proposed for the detection and identification of operational faults occurring in an ATV. The approach is tested on an experimental dataset, consisting of two motors’ sound and vibration signals, collected as an ATV operates for a specific task under three different conditions. The diagnosis results indicate that the proposed deep learning-based multisensory fault diagnosis approach is able to diagnose operational conditions with significantly high accuracy compared to single or dual sensor approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑一笑完成签到,获得积分10
1秒前
wang发布了新的文献求助10
1秒前
科研鸟发布了新的文献求助10
1秒前
2秒前
小马甲应助liuzhen采纳,获得10
3秒前
热心如彤发布了新的文献求助10
4秒前
wwww完成签到 ,获得积分10
5秒前
宛海发布了新的文献求助10
7秒前
Gino完成签到,获得积分0
8秒前
科研通AI2S应助科研鸟采纳,获得10
8秒前
柯一一应助科研鸟采纳,获得10
8秒前
FashionBoy应助科研鸟采纳,获得10
8秒前
华仔应助科研鸟采纳,获得10
8秒前
12秒前
机智的紫丝完成签到,获得积分10
15秒前
华仔应助wang采纳,获得10
15秒前
希望天下0贩的0应助七七采纳,获得10
16秒前
17秒前
17秒前
20秒前
nine2652发布了新的文献求助10
20秒前
不安的秋白完成签到,获得积分10
22秒前
华仔应助糟糕的铁锤采纳,获得30
23秒前
23秒前
25秒前
25秒前
彭于晏应助峪星采纳,获得10
26秒前
26秒前
科研鸟完成签到,获得积分10
26秒前
liuzhen发布了新的文献求助10
26秒前
27秒前
zhang完成签到,获得积分10
28秒前
28秒前
ycw123发布了新的文献求助10
28秒前
jiangcai完成签到,获得积分10
28秒前
31秒前
七七发布了新的文献求助10
31秒前
杨111完成签到 ,获得积分10
31秒前
默默小鸽子完成签到,获得积分20
31秒前
Behumble发布了新的文献求助10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966147
求助须知:如何正确求助?哪些是违规求助? 3511567
关于积分的说明 11158912
捐赠科研通 3246169
什么是DOI,文献DOI怎么找? 1793309
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343