Multisensory data fusion-based deep learning approach for fault diagnosis of an industrial autonomous transfer vehicle

计算机科学 深度学习 传感器融合 融合 人工智能 断层(地质) 学习迁移 机器学习 哲学 语言学 地震学 地质学
作者
Özgür Gültekin,E. Mine Çinar,Kemal Özkan,Ahmet Yazıcı
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:200: 117055-117055 被引量:46
标识
DOI:10.1016/j.eswa.2022.117055
摘要

The integration of Industry 4.0 concepts into today’s manufacturing settings has introduced new technology tools that have already started providing companies an increased level of efficiency in certain operations. Autonomous Transfer Vehicles (ATV) are one of these new tools that are popular in today’s manufacturing settings. As these tools become an integral part of the manufacturing ecosystem, accurate diagnosis of ATV faults and anomalies will also be crucial in manufacturing settings. Similar to any other intelligent detection of machinery faults, analyzing and utilizing signals measured from attached ATV sensors may reveal any uncovered operational faults or critical operational/safety concerns. In this context, this paper focuses on an intelligent fault detection of an ATV tool utilizing signals measured from multiple attached sensors. A novel Convolutional Neural Network-based data fusion approach, utilizing short time Fourier Transform, is proposed for the detection and identification of operational faults occurring in an ATV. The approach is tested on an experimental dataset, consisting of two motors’ sound and vibration signals, collected as an ATV operates for a specific task under three different conditions. The diagnosis results indicate that the proposed deep learning-based multisensory fault diagnosis approach is able to diagnose operational conditions with significantly high accuracy compared to single or dual sensor approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
F2022发布了新的文献求助10
刚刚
zxm完成签到 ,获得积分10
1秒前
Chara_kara完成签到,获得积分10
1秒前
Bazinga发布了新的文献求助10
1秒前
大黄人发布了新的文献求助10
1秒前
烟花应助wzz采纳,获得10
1秒前
111发布了新的文献求助10
2秒前
wanghaha发布了新的文献求助10
2秒前
Chara_kara发布了新的文献求助10
2秒前
香蕉觅云应助k_1采纳,获得10
3秒前
slx完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
11发布了新的文献求助10
5秒前
小风吹着发布了新的文献求助10
5秒前
萝卜猪发布了新的文献求助10
5秒前
黑森林完成签到,获得积分10
5秒前
柒柒完成签到,获得积分20
5秒前
科研通AI6应助激昂的天晴采纳,获得10
6秒前
充电宝应助秋水采纳,获得10
6秒前
zgrmws应助虚心的冷雪采纳,获得10
6秒前
SInyi完成签到,获得积分10
7秒前
7秒前
7秒前
美味烧鸡发布了新的文献求助30
8秒前
8秒前
怡然的怜烟举报Brian求助涉嫌违规
8秒前
小米粥发布了新的文献求助10
8秒前
酷波er应助别当真采纳,获得10
9秒前
青葱之松发布了新的文献求助10
9秒前
大黄人完成签到,获得积分20
9秒前
123完成签到,获得积分20
9秒前
10秒前
大个应助眼睛大的比巴卜采纳,获得10
10秒前
offred完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577090
求助须知:如何正确求助?哪些是违规求助? 4662349
关于积分的说明 14741219
捐赠科研通 4602974
什么是DOI,文献DOI怎么找? 2526066
邀请新用户注册赠送积分活动 1495974
关于科研通互助平台的介绍 1465478