孔雀绿
基质(水族馆)
检出限
拉曼光谱
呋喃西林
材料科学
核化学
化学
色谱法
有机化学
医学
海洋学
吸附
光学
地质学
传统医学
物理
作者
Erwei Liu,Xia Fan,Zengling Yang,Lujia Han,Shouxue Li,Yuanping Huang,Keke Liao,Linwei Cai
标识
DOI:10.1016/j.saa.2022.121229
摘要
Illegal additives can bring the economic benefit, resulting in the continuous irregularities in the use of illegal additives. In this study, a method for rapid, sensitive, and simultaneous detection of multiple illegal additives including enrofloxacin, malachite green, nitrofurazone, and Sudan Ⅰ in feed and food samples by surface-enhanced Raman spectroscopy (SERS) with Cu2O-Ag/AF-C3N4 composite substrate was developed. A Cu2O-Ag/AF-C3N4 composite substrate was prepared by reacting Cu2O modified by AF-C3N4 nanosheets with AgNO3 solution. The substrate has a limit of detection (LOD) of 1.29 × 10-6 mg/L, a good linear relationship of between 10-6 and 10-2 mg/L, and an R2 value of 0.95 for Rhodamine B detection. Furthermore, the substrate showed high uniformity and reproducibility, with relative standard deviations (RSD) of 6.74% and 4.85%, respectively. Adding AF-C3N4 nanosheets not only increased the enhancement effect of the substrate, which was 4.4 times of that before addition, but also endowed it with good self-cleaning characteristics owing to its excellent photocatalytic activity. The substrate can be reused, with over 80% of the original Raman signal strength remaining after four repeat uses. The SERS based on the above substrate was used to detect the illegal additives, the LOD of enrofloxacin, malachite green, nitrofurazone, and Sudan Ⅰ can reach 4.67 × 10-4 mg/L, 2.57 × 10-5 mg/L, 5.7 × 10-7 mg/L and 6.92 × 10-5 mg/L. The results reveal that this substrate has great application potential in feed and food safety.
科研通智能强力驱动
Strongly Powered by AbleSci AI