Position calculation models by neural computing and online learning methods for high-speed train

计算机科学 人工神经网络 自适应神经模糊推理系统 反向传播 梯度下降 稳健性(进化) 火车 人工智能 均方误差 机器学习 模糊逻辑 模糊控制系统 地理 化学 统计 基因 地图学 生物化学 数学
作者
Dewang Chen,Xiaojie Han,Ruijun Cheng,Lixing Yang
出处
期刊:Neural Computing and Applications [Springer Nature]
卷期号:27 (6): 1617-1628 被引量:17
标识
DOI:10.1007/s00521-015-1960-6
摘要

For high-speed trains, high precision of train positioning is important to guarantee train safety and operational efficiency. By analyzing the operational data of Beijing---Shanghai high-speed railway, we find that the currently used average speed model (ASM) is not good enough as the relative error is about 2.5 %. To reduce the positioning error, we respectively establish three models for calculating train positions by advanced neural computing methods, including back-propagation (BP), radial basis function (RBF) and adaptive network-based fuzzy inference system (ANFIS). Furthermore, six indices are defined to evaluate the performance of the three established models. Compared with ASM, the positioning error can be reduced by about 50 % by neural computing models. Then, to increase the robustness of neural computing models and real-time response, online learning methods are developed to update the parameters in the last layer of neural computing models by the gradient descent method. With the online learning methods, the positioning error of neural computing models can be further reduced by about 10 %. Among the three models, the ANFIS model is the best in both training and testing. The BP model is better than the RBF model in training, but worse in testing. In a word, the three models can reduce the half number of transponders to save the cost under the same positioning error or reduce the positioning error about 50 % in the case of the same number of transponders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
clean完成签到,获得积分20
刚刚
Lucas发布了新的文献求助10
刚刚
刚刚
朴实以松发布了新的文献求助10
刚刚
感谢橘子转发科研通微信,获得积分50
刚刚
围炉煮茶完成签到,获得积分10
1秒前
1秒前
云锋发布了新的文献求助10
2秒前
兴奋的问旋应助务实盼海采纳,获得10
2秒前
李秋静发布了新的文献求助10
2秒前
2秒前
无花果应助cookie采纳,获得10
3秒前
3秒前
斯文败类应助阳尧采纳,获得10
3秒前
4秒前
4秒前
abjz完成签到,获得积分10
4秒前
三千弱水为君饮完成签到,获得积分10
5秒前
5秒前
cata完成签到,获得积分10
5秒前
感谢79转发科研通微信,获得积分50
5秒前
5秒前
troubadourelf发布了新的文献求助10
6秒前
frank发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
感谢超帅冬易转发科研通微信,获得积分50
9秒前
9秒前
10秒前
10秒前
lixia完成签到 ,获得积分10
10秒前
10秒前
11秒前
在水一方应助jy采纳,获得10
11秒前
11秒前
Lucas完成签到,获得积分10
12秒前
12秒前
NorthWang发布了新的文献求助10
12秒前
薄哼哼完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794