Position calculation models by neural computing and online learning methods for high-speed train

计算机科学 人工神经网络 自适应神经模糊推理系统 反向传播 梯度下降 稳健性(进化) 火车 人工智能 均方误差 机器学习 模糊逻辑 模糊控制系统 地理 化学 统计 基因 地图学 生物化学 数学
作者
Dewang Chen,Xiaojie Han,Ruijun Cheng,Lixing Yang
出处
期刊:Neural Computing and Applications [Springer Nature]
卷期号:27 (6): 1617-1628 被引量:17
标识
DOI:10.1007/s00521-015-1960-6
摘要

For high-speed trains, high precision of train positioning is important to guarantee train safety and operational efficiency. By analyzing the operational data of Beijing---Shanghai high-speed railway, we find that the currently used average speed model (ASM) is not good enough as the relative error is about 2.5 %. To reduce the positioning error, we respectively establish three models for calculating train positions by advanced neural computing methods, including back-propagation (BP), radial basis function (RBF) and adaptive network-based fuzzy inference system (ANFIS). Furthermore, six indices are defined to evaluate the performance of the three established models. Compared with ASM, the positioning error can be reduced by about 50 % by neural computing models. Then, to increase the robustness of neural computing models and real-time response, online learning methods are developed to update the parameters in the last layer of neural computing models by the gradient descent method. With the online learning methods, the positioning error of neural computing models can be further reduced by about 10 %. Among the three models, the ANFIS model is the best in both training and testing. The BP model is better than the RBF model in training, but worse in testing. In a word, the three models can reduce the half number of transponders to save the cost under the same positioning error or reduce the positioning error about 50 % in the case of the same number of transponders.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Sukey完成签到,获得积分10
刚刚
刚刚
蓝蜗牛完成签到,获得积分10
刚刚
李学完成签到,获得积分10
刚刚
温梦花雨完成签到 ,获得积分10
刚刚
1秒前
1秒前
CodeCraft应助平常亦凝采纳,获得10
1秒前
加油冲完成签到,获得积分10
1秒前
2秒前
今后应助Ryubot采纳,获得10
2秒前
2秒前
Kamal完成签到,获得积分10
2秒前
0110完成签到,获得积分10
2秒前
天涯发布了新的文献求助10
3秒前
3秒前
李爱国应助邹咕噜采纳,获得10
3秒前
3秒前
4秒前
完美世界应助CVEN采纳,获得10
4秒前
zch发布了新的文献求助10
4秒前
上官若男应助soga采纳,获得10
4秒前
111发布了新的文献求助10
4秒前
5秒前
牟若溪发布了新的文献求助10
5秒前
思源应助绊宸采纳,获得10
6秒前
打打应助讨厌所有人采纳,获得10
6秒前
6秒前
TT完成签到,获得积分10
6秒前
孤独听荷完成签到,获得积分10
6秒前
7秒前
Lucas应助精明人达采纳,获得10
7秒前
7秒前
jajaqy完成签到,获得积分10
7秒前
7秒前
蓝柚应助刘爽采纳,获得10
8秒前
爆米花应助hyr采纳,获得10
8秒前
simpleboy完成签到,获得积分10
8秒前
9527发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034