Practical Approach to Asynchronous Multivariate Time Series Anomaly Detection and Localization

异常检测 杠杆(统计) 计算机科学 机器学习 自编码 水准点(测量) 特征学习 深度学习 数据挖掘 人工智能 时间序列 多元统计 代表(政治) 模式识别(心理学) 异步通信 政治 计算机网络 政治学 法学 地理 大地测量学
作者
Ahmed Abdulaal,Zhuang‐Hua Liu,Tomer Lancewicki
出处
期刊:Knowledge Discovery and Data Mining 卷期号:: 2485-2494 被引量:133
标识
DOI:10.1145/3447548.3467174
摘要

Engineers at eBay utilize robust methods in monitoring IT system signals for anomalies. However, the growing scale of signals, both in volumes and dimensions, overpowers traditional statistical state-space or supervised learning tools. Thus, state-of-the-art methods based on unsupervised deep learning are sought in recent research. However, we experienced flaws when implementing those methods, such as requiring partial supervision and weaknesses to high dimensional datasets, among other reasons discussed in this paper. We propose a practical approach for inferring anomalies from large multivariate sets. We observe an abundance of time series in real-world applications, which exhibit asynchronous and consistent repetitive variations, such as IT, weather, utility, and transportation. Our solution is designed to leverage this behavior. The solution utilizes spectral analysis on the latent representation of a pre-trained autoencoder to extract dominant frequencies across the signals, which are then used in a subsequent network that learns the phase shifts across the signals and produces a synchronized representation of the raw multivariate. Random subsets of the synchronous multivariate are then fed into an array of autoencoders learning to minimize the quantile reconstruction losses, which are then used to infer and localize anomalies based on a majority vote. We benchmark this method against state-of-the-art approaches on public datasets and eBay's data using their referenced evaluation methods. Furthermore, we address the limitations of the referenced evaluation methods and propose a more realistic evaluation method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏泽水梦完成签到,获得积分10
1秒前
老实的半山完成签到,获得积分10
1秒前
指纹抒写年轮完成签到,获得积分10
1秒前
愉快的哈密瓜完成签到,获得积分10
1秒前
小小发布了新的文献求助10
1秒前
小二郎应助成就缘分采纳,获得10
1秒前
2秒前
看看文献吧完成签到,获得积分10
2秒前
啵啵发布了新的文献求助10
2秒前
3秒前
初吻还在发布了新的文献求助10
3秒前
哇哦发布了新的文献求助10
4秒前
李唯佳发布了新的文献求助10
4秒前
4秒前
酷波er应助渊思采纳,获得10
4秒前
4秒前
罗mian完成签到,获得积分10
5秒前
5秒前
WUJIAYU完成签到 ,获得积分10
6秒前
小蘑菇应助小汤圆采纳,获得10
7秒前
认真的小熊饼干完成签到,获得积分10
7秒前
Grayball应助蒙开心采纳,获得10
7秒前
7秒前
真开心完成签到,获得积分10
7秒前
Ava应助点点采纳,获得10
7秒前
Seldomyg完成签到 ,获得积分10
8秒前
鲸是海蓝色关注了科研通微信公众号
8秒前
南亭完成签到,获得积分10
8秒前
Orange应助o10采纳,获得10
9秒前
9秒前
9秒前
小王发布了新的文献求助10
10秒前
初吻还在完成签到,获得积分10
11秒前
MADKAI发布了新的文献求助10
11秒前
Asss完成签到,获得积分10
11秒前
11秒前
时光友岸完成签到,获得积分10
12秒前
13秒前
昭昭完成签到,获得积分10
13秒前
niu1完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672