Practical Approach to Asynchronous Multivariate Time Series Anomaly Detection and Localization

异常检测 杠杆(统计) 计算机科学 机器学习 自编码 水准点(测量) 特征学习 深度学习 数据挖掘 人工智能 时间序列 多元统计 代表(政治) 可扩展性 模式识别(心理学) 异步通信 政治 数据库 计算机网络 政治学 法学 地理 大地测量学
作者
Ahmed Abdulaal,Zhuang‐Hua Liu,Tomer Lancewicki
出处
期刊:Knowledge Discovery and Data Mining 被引量:110
标识
DOI:10.1145/3447548.3467174
摘要

Engineers at eBay utilize robust methods in monitoring IT system signals for anomalies. However, the growing scale of signals, both in volumes and dimensions, overpowers traditional statistical state-space or supervised learning tools. Thus, state-of-the-art methods based on unsupervised deep learning are sought in recent research. However, we experienced flaws when implementing those methods, such as requiring partial supervision and weaknesses to high dimensional datasets, among other reasons discussed in this paper. We propose a practical approach for inferring anomalies from large multivariate sets. We observe an abundance of time series in real-world applications, which exhibit asynchronous and consistent repetitive variations, such as IT, weather, utility, and transportation. Our solution is designed to leverage this behavior. The solution utilizes spectral analysis on the latent representation of a pre-trained autoencoder to extract dominant frequencies across the signals, which are then used in a subsequent network that learns the phase shifts across the signals and produces a synchronized representation of the raw multivariate. Random subsets of the synchronous multivariate are then fed into an array of autoencoders learning to minimize the quantile reconstruction losses, which are then used to infer and localize anomalies based on a majority vote. We benchmark this method against state-of-the-art approaches on public datasets and eBay's data using their referenced evaluation methods. Furthermore, we address the limitations of the referenced evaluation methods and propose a more realistic evaluation method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昵称什么的不重要啦完成签到 ,获得积分10
4秒前
亦hcy完成签到,获得积分10
5秒前
5秒前
安静的芝麻完成签到,获得积分10
6秒前
zqy1111完成签到,获得积分10
7秒前
hgzz发布了新的文献求助10
9秒前
11秒前
fall完成签到,获得积分20
12秒前
丘比特应助zhao采纳,获得10
12秒前
diu应助ww采纳,获得10
13秒前
14秒前
15秒前
乐乐应助活力的听露采纳,获得10
15秒前
Ann发布了新的文献求助10
17秒前
FashionBoy应助草原狼采纳,获得10
17秒前
大个应助渣渣儿采纳,获得10
17秒前
深情安青应助LynSharonRose采纳,获得10
18秒前
wanci应助韭菜采纳,获得10
18秒前
满意之玉发布了新的文献求助10
19秒前
19秒前
MO发布了新的文献求助10
20秒前
研友_VZG7GZ应助鳗鱼青柏采纳,获得10
20秒前
kathy发布了新的文献求助30
20秒前
21秒前
白白拜拜完成签到,获得积分10
22秒前
23秒前
24秒前
zhao发布了新的文献求助10
25秒前
29秒前
王九八发布了新的文献求助10
30秒前
31秒前
UU完成签到 ,获得积分10
31秒前
怕孤独的访云完成签到 ,获得积分10
32秒前
tuanheqi应助七田皿采纳,获得20
32秒前
Ann完成签到,获得积分10
33秒前
义气的羽毛完成签到,获得积分10
33秒前
Double_N完成签到,获得积分10
33秒前
赘婿应助满意之玉采纳,获得10
34秒前
天真的酒窝完成签到 ,获得积分10
35秒前
杳鸢应助charles采纳,获得20
36秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java: A Project-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269135
求助须知:如何正确求助?哪些是违规求助? 2908715
关于积分的说明 8346599
捐赠科研通 2578877
什么是DOI,文献DOI怎么找? 1402481
科研通“疑难数据库(出版商)”最低求助积分说明 655455
邀请新用户注册赠送积分活动 634602