Practical Approach to Asynchronous Multivariate Time Series Anomaly Detection and Localization

异常检测 杠杆(统计) 计算机科学 机器学习 自编码 水准点(测量) 特征学习 深度学习 数据挖掘 人工智能 时间序列 多元统计 代表(政治) 模式识别(心理学) 异步通信 计算机网络 大地测量学 政治 政治学 法学 地理
作者
Ahmed Abdulaal,Zhuang‐Hua Liu,Tomer Lancewicki
出处
期刊:Knowledge Discovery and Data Mining 卷期号:: 2485-2494 被引量:171
标识
DOI:10.1145/3447548.3467174
摘要

Engineers at eBay utilize robust methods in monitoring IT system signals for anomalies. However, the growing scale of signals, both in volumes and dimensions, overpowers traditional statistical state-space or supervised learning tools. Thus, state-of-the-art methods based on unsupervised deep learning are sought in recent research. However, we experienced flaws when implementing those methods, such as requiring partial supervision and weaknesses to high dimensional datasets, among other reasons discussed in this paper. We propose a practical approach for inferring anomalies from large multivariate sets. We observe an abundance of time series in real-world applications, which exhibit asynchronous and consistent repetitive variations, such as IT, weather, utility, and transportation. Our solution is designed to leverage this behavior. The solution utilizes spectral analysis on the latent representation of a pre-trained autoencoder to extract dominant frequencies across the signals, which are then used in a subsequent network that learns the phase shifts across the signals and produces a synchronized representation of the raw multivariate. Random subsets of the synchronous multivariate are then fed into an array of autoencoders learning to minimize the quantile reconstruction losses, which are then used to infer and localize anomalies based on a majority vote. We benchmark this method against state-of-the-art approaches on public datasets and eBay's data using their referenced evaluation methods. Furthermore, we address the limitations of the referenced evaluation methods and propose a more realistic evaluation method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
深情安青应助和谐谷蕊采纳,获得10
刚刚
专注的问寒应助法外狂徒采纳,获得100
刚刚
1秒前
呱呱蛙发布了新的文献求助10
2秒前
2秒前
啊呜发布了新的文献求助10
3秒前
努力发文不会累完成签到,获得积分10
3秒前
明亮的颖完成签到,获得积分10
3秒前
3秒前
lyy驳回了CodeCraft应助
4秒前
jsw发布了新的文献求助10
4秒前
4秒前
专注的问寒应助坚强乌龟采纳,获得20
5秒前
5秒前
5秒前
核动力驴发布了新的文献求助10
6秒前
1121发布了新的文献求助10
6秒前
宁燕完成签到,获得积分10
7秒前
mmmk完成签到,获得积分10
7秒前
英俊的铭应助jklwss采纳,获得10
7秒前
Annihilating完成签到,获得积分10
7秒前
zhj发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
mmmk发布了新的文献求助30
10秒前
迷你的鹏飞完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
陈星完成签到,获得积分10
13秒前
89757发布了新的文献求助10
13秒前
dw发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
ucas发布了新的文献求助10
15秒前
15秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420