High-resolution CT image analysis based on 3D convolutional neural network can enhance the classification performance of radiologists in classifying pulmonary non-solid nodules

医学 卷积神经网络 阿卡克信息准则 接收机工作特性 肺腺癌 放射科 人工智能 腺癌 模式识别(心理学) 核医学 计算机科学 机器学习 内科学 癌症
作者
Teng Zhang,Yida Wang,Yingli Sun,Mei Yuan,Yan Zhong,Hai Li,Tong-Fu Yu,Jie Wang
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:141: 109810-109810 被引量:7
标识
DOI:10.1016/j.ejrad.2021.109810
摘要

Objective To investigate whether 3D convolutional neural network (CNN) is able to enhance the classification performance of radiologists in classifying pulmonary non-solid nodules (NSNs). Materials and Methods Data of patients with solitary NSNs and diagnosed as adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or invasive adenocarcinoma (IAC) in pathological after surgical resection were analyzed retrospectively. Ultimately, 532 patients in our institution were included in the study: 427 cases (144 AIS, 167 MIA, 116 IAC) were assigned to training dataset and 105 cases (36 AIS, 41 MIA and 28 IAC) were assigned to validation dataset. For external validation, 177 patients (60 AIS, 69 MIA and 48 IAC) from another hospital were assigned to testing dataset. The clinical and morphological characteristics of NSNs were established as radiologists’ model. The trained classification model based on 3D CNN was used to identify NSNs types automatically. The evaluation and comparison on classification performance of the two models and CNN + radiologists’ model were performed via receiver operating curve (ROC) analysis and integrated discrimination improvement (IDI) index. The Akaike information criterion (AIC) was calculated to find the best-fit model. Results In external testing dataset, radiologists’ model showed inferior classification performance than CNN model both in discriminating AIS from MIA-IAC and AIS-MIA from IAC (the area under the ROC curve (Az value), 0.693 vs 0.820, P = 0.011; 0.746 vs 0.833, P = 0.026, respectively). However, combining CNN significantly enhanced the classification performance of radiologists and exhibited higher Az values than CNN model alone (Az values, 0.893 vs 0.820, P < 0.001; 0.906 vs 0.833, P < 0.001, respectively). The IDI index further confirmed CNN’s contribution to radiologists in classifying NSNs (IDI = 25.8 % (18.3–46.1 %), P < 0.001; IDI = 30.1 % (26.1–45.2 %), P < 0.001, respectively). The CNN + radiologists’ model also provided the best fit over radiologists’ model and CNN model alone (AIC value 63.3 % vs. 29.5 %, 49.5 %, P < 0.001; 69.2 % vs. 34.9 %, 53.6 %, P < 0.001, respectively). Conclusion CNN successfully classified NSNs based on CT images and its classification performance were superior to radiologists’ model. But the classification performance of radiologists can be significantly enhanced when combined with CNN in classifying NSNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
nulinuli完成签到 ,获得积分10
1秒前
光亮丹琴完成签到,获得积分10
1秒前
1秒前
2秒前
打打应助飞飞采纳,获得10
2秒前
谨慎珊完成签到,获得积分10
3秒前
无奈的代珊完成签到 ,获得积分10
3秒前
晚灯君完成签到 ,获得积分10
3秒前
4秒前
dan发布了新的文献求助30
5秒前
Three完成签到,获得积分10
5秒前
6秒前
云瑾应助revew666采纳,获得30
6秒前
ZZzz完成签到 ,获得积分10
6秒前
7秒前
7秒前
qll完成签到,获得积分10
7秒前
LKIU完成签到 ,获得积分10
7秒前
8秒前
金鱼的眼泪完成签到,获得积分10
8秒前
9秒前
研友_8DoPDZ完成签到,获得积分10
10秒前
共享精神应助袁大头采纳,获得10
10秒前
11秒前
星辰大海应助谨慎珊采纳,获得30
12秒前
qll发布了新的文献求助10
12秒前
小吕完成签到 ,获得积分10
12秒前
curtisness应助furin001采纳,获得10
13秒前
Jasper应助johnzsin采纳,获得10
13秒前
14秒前
CodeCraft应助可靠的寒风采纳,获得10
15秒前
ABC给ABC的求助进行了留言
17秒前
云瑾应助正在采纳,获得10
17秒前
18秒前
醉倒天瓢发布了新的文献求助10
19秒前
Jasper应助qll采纳,获得10
20秒前
20秒前
xiao_J完成签到,获得积分10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137214
求助须知:如何正确求助?哪些是违规求助? 2788251
关于积分的说明 7785413
捐赠科研通 2444284
什么是DOI,文献DOI怎么找? 1299869
科研通“疑难数据库(出版商)”最低求助积分说明 625639
版权声明 601023