High-resolution CT image analysis based on 3D convolutional neural network can enhance the classification performance of radiologists in classifying pulmonary non-solid nodules

医学 卷积神经网络 阿卡克信息准则 接收机工作特性 肺腺癌 放射科 人工智能 腺癌 模式识别(心理学) 核医学 计算机科学 机器学习 内科学 癌症
作者
Teng Zhang,Yida Wang,Yingli Sun,Mei Yuan,Yan Zhong,Hai Li,Tong-Fu Yu,Jie Wang
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:141: 109810-109810 被引量:7
标识
DOI:10.1016/j.ejrad.2021.109810
摘要

Objective To investigate whether 3D convolutional neural network (CNN) is able to enhance the classification performance of radiologists in classifying pulmonary non-solid nodules (NSNs). Materials and Methods Data of patients with solitary NSNs and diagnosed as adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or invasive adenocarcinoma (IAC) in pathological after surgical resection were analyzed retrospectively. Ultimately, 532 patients in our institution were included in the study: 427 cases (144 AIS, 167 MIA, 116 IAC) were assigned to training dataset and 105 cases (36 AIS, 41 MIA and 28 IAC) were assigned to validation dataset. For external validation, 177 patients (60 AIS, 69 MIA and 48 IAC) from another hospital were assigned to testing dataset. The clinical and morphological characteristics of NSNs were established as radiologists’ model. The trained classification model based on 3D CNN was used to identify NSNs types automatically. The evaluation and comparison on classification performance of the two models and CNN + radiologists’ model were performed via receiver operating curve (ROC) analysis and integrated discrimination improvement (IDI) index. The Akaike information criterion (AIC) was calculated to find the best-fit model. Results In external testing dataset, radiologists’ model showed inferior classification performance than CNN model both in discriminating AIS from MIA-IAC and AIS-MIA from IAC (the area under the ROC curve (Az value), 0.693 vs 0.820, P = 0.011; 0.746 vs 0.833, P = 0.026, respectively). However, combining CNN significantly enhanced the classification performance of radiologists and exhibited higher Az values than CNN model alone (Az values, 0.893 vs 0.820, P < 0.001; 0.906 vs 0.833, P < 0.001, respectively). The IDI index further confirmed CNN’s contribution to radiologists in classifying NSNs (IDI = 25.8 % (18.3–46.1 %), P < 0.001; IDI = 30.1 % (26.1–45.2 %), P < 0.001, respectively). The CNN + radiologists’ model also provided the best fit over radiologists’ model and CNN model alone (AIC value 63.3 % vs. 29.5 %, 49.5 %, P < 0.001; 69.2 % vs. 34.9 %, 53.6 %, P < 0.001, respectively). Conclusion CNN successfully classified NSNs based on CT images and its classification performance were superior to radiologists’ model. But the classification performance of radiologists can be significantly enhanced when combined with CNN in classifying NSNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
徐若楠完成签到,获得积分20
2秒前
子非鱼完成签到,获得积分10
2秒前
巴适地瓜发布了新的文献求助10
2秒前
顾矜应助qiuqiu采纳,获得30
3秒前
holiday发布了新的文献求助30
4秒前
梧桐发布了新的文献求助10
5秒前
5秒前
张小卷完成签到,获得积分10
6秒前
移液枪是什么完成签到,获得积分10
6秒前
桐桐应助子非鱼采纳,获得10
7秒前
巴适地瓜完成签到,获得积分10
8秒前
akakns完成签到 ,获得积分10
9秒前
领导范儿应助kk采纳,获得10
9秒前
11秒前
13秒前
桐桐应助科研通管家采纳,获得10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
15秒前
15秒前
Mjq发布了新的文献求助10
15秒前
LNN完成签到,获得积分10
16秒前
holiday完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
18秒前
YZZ完成签到,获得积分10
18秒前
18秒前
zhangshu发布了新的文献求助10
20秒前
yeeeee发布了新的文献求助10
20秒前
jason完成签到,获得积分20
23秒前
yeeeee完成签到 ,获得积分10
23秒前
笑笑最可爱完成签到,获得积分10
24秒前
张张完成签到,获得积分10
24秒前
25秒前
宁annie完成签到,获得积分10
26秒前
27秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961032
求助须知:如何正确求助?哪些是违规求助? 3507273
关于积分的说明 11135142
捐赠科研通 3239686
什么是DOI,文献DOI怎么找? 1790338
邀请新用户注册赠送积分活动 872359
科研通“疑难数据库(出版商)”最低求助积分说明 803150