Clinical decision support algorithm based on machine learning to assess the clinical response to anti–programmed death-1 therapy in patients with non–small-cell lung cancer

算法 医学 肺癌 癌症 程序指令 肿瘤科 内科学 重症监护医学 计算机科学 数学 数学教育
作者
Beung‐Chul Ahn,Jea-Woo So,Chun-Bong Synn,Tae Hyung Kim,Jae Hwan Kim,Yeongseon Byeon,Young Seob Kim,Seong Gu Heo,San‐Duk Yang,Mi Ran Yun,Sangbin Lim,Su‐Jin Choi,Wongeun Lee,Dong Kwon Kim,Eun Ji Lee,Seul Lee,Doo-Jae Lee,Chang Gon Kim,Sun Min Lim,Min Hee Hong,Byoung Chul Cho,Kyoung‐Ho Pyo,Hye Ryun Kim
出处
期刊:European Journal of Cancer [Elsevier BV]
卷期号:153: 179-189 被引量:25
标识
DOI:10.1016/j.ejca.2021.05.019
摘要

Anti-programmed death (PD)-1 therapy confers sustainable clinical benefits for patients with non-small-cell lung cancer (NSCLC), but only some patients respond to the treatment. Various clinical characteristics, including the PD-ligand 1 (PD-L1) level, are related to the anti-PD-1 response; however, none of these can independently serve as predictive biomarkers. Herein, we established a machine learning (ML)-based clinical decision support algorithm to predict the anti-PD-1 response by comprehensively combining the clinical information.We collected clinical data, including patient characteristics, mutations and laboratory findings, from the electronic medical records of 142 patients with NSCLC treated with anti-PD-1 therapy; these were analysed for the clinical outcome as the discovery set. Nineteen clinically meaningful features were used in supervised ML algorithms, including LightGBM, XGBoost, multilayer neural network, ridge regression and linear discriminant analysis, to predict anti-PD-1 responses. Based on each ML algorithm's prediction performance, the optimal ML was selected and validated in an independent validation set of PD-1 inhibitor-treated patients.Several factors, including PD-L1 expression, tumour burden and neutrophil-to-lymphocyte ratio, could independently predict the anti-PD-1 response in the discovery set. ML platforms based on the LightGBM algorithm using 19 clinical features showed more significant prediction performance (area under the curve [AUC] 0.788) than on individual clinical features and traditional multivariate logistic regression (AUC 0.759).Collectively, our LightGBM algorithm offers a clinical decision support model to predict the anti-PD-1 response in patients with NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助xxxx采纳,获得10
1秒前
早安甜甜菌完成签到,获得积分10
2秒前
HE完成签到,获得积分10
2秒前
YaoZhang完成签到 ,获得积分10
4秒前
4秒前
打喷嚏的猪完成签到,获得积分10
4秒前
radish发布了新的文献求助10
4秒前
whoami发布了新的文献求助10
5秒前
洁净方盒完成签到,获得积分10
5秒前
李健的粉丝团团长应助小a采纳,获得10
6秒前
洁净方盒发布了新的文献求助10
8秒前
迷人灵完成签到,获得积分10
8秒前
9秒前
9秒前
xiaoxiao完成签到,获得积分10
11秒前
13秒前
whoami完成签到,获得积分10
13秒前
TT发布了新的文献求助10
14秒前
15秒前
科研通AI5应助ns123采纳,获得10
15秒前
15秒前
19秒前
guo_a_n完成签到,获得积分10
19秒前
19秒前
梨子发布了新的文献求助10
20秒前
一二三发布了新的文献求助10
20秒前
Colin完成签到,获得积分10
21秒前
Sally发布了新的文献求助10
22秒前
22秒前
24秒前
zhao完成签到,获得积分10
24秒前
cc发布了新的文献求助30
25秒前
考研小白发布了新的文献求助10
26秒前
27秒前
TT完成签到,获得积分10
27秒前
可爱的函函应助是风动采纳,获得10
27秒前
Janvenns发布了新的文献求助10
28秒前
28秒前
科研通AI5应助MOXA采纳,获得30
29秒前
ns123发布了新的文献求助10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748885
求助须知:如何正确求助?哪些是违规求助? 3291961
关于积分的说明 10075259
捐赠科研通 3007650
什么是DOI,文献DOI怎么找? 1651753
邀请新用户注册赠送积分活动 786700
科研通“疑难数据库(出版商)”最低求助积分说明 751826