Speech Emotion Recognition Enhanced Traffic Efficiency Solution for Autonomous Vehicles in a 5G-Enabled Space–Air–Ground Integrated Intelligent Transportation System

计算机科学 Softmax函数 智能交通系统 编码器 实时计算 人工智能 深度学习 工程类 操作系统 土木工程
作者
Liang Tan,Keping Yu,Long Lin,Xiaofan Cheng,Gautam Srivastava,Jerry Chun‐Wei Lin,Wei Wei
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (3): 2830-2842 被引量:119
标识
DOI:10.1109/tits.2021.3119921
摘要

Speech emotion recognition (SER) is becoming the main human–computer interaction logic for autonomous vehicles in the next generation of intelligent transportation systems (ITSs). It can improve not only the safety of autonomous vehicles but also the personalized in-vehicle experience. However, current vehicle-mounted SER systems still suffer from two major shortcomings. One is the insufficient service capacity of the vehicle communication network, which is unable to meet the SER needs of autonomous vehicles in next-generation ITSs in terms of the data transmission rate, power consumption, and latency. Second, the accuracy of SER is poor, and it cannot provide sufficient interactivity and personalization between users and vehicles. To address these issues, we propose an SER-enhanced traffic efficiency solution for autonomous vehicles in a 5G-enabled space–air–ground integrated network (SAGIN)-based ITS. First, we convert the vehicle speech information data into spectrograms and input them into an AlexNet network model to obtain the high-level features of the vehicle speech acoustic model. At the same time, we convert the vehicle speech information data into text information and input it into the Bidirectional Encoder Representations from Transformers (BERT) model to obtain the high-level features of the corresponding text model. Finally, these two sets of high-level features are cascaded together to obtain fused features, which are sent to a softmax classifier for emotion matching and classification. Experiments show that the proposed solution can improve not only the SAGIN’s service capabilities, resulting in a large capacity, high bandwidth, ultralow latency, and high reliability, but also the accuracy of vehicle SER as well as the performance, practicality, and user experience of the ITS
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gossie完成签到,获得积分10
刚刚
1秒前
111发布了新的文献求助10
2秒前
2秒前
Huangy000完成签到,获得积分20
2秒前
小马甲应助啦啦啦采纳,获得10
3秒前
慕容真发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
清秀黑夜发布了新的文献求助10
4秒前
5秒前
包容的琦发布了新的文献求助10
5秒前
ryan完成签到,获得积分10
5秒前
5秒前
轨迹完成签到,获得积分10
6秒前
derlun发布了新的文献求助10
7秒前
阳光完成签到,获得积分10
7秒前
小王发布了新的文献求助10
7秒前
赘婿应助Shell采纳,获得10
7秒前
Huangy000发布了新的文献求助10
8秒前
ttttttx发布了新的文献求助10
8秒前
欢呼的丹南给欢呼的丹南的求助进行了留言
8秒前
咋了完成签到 ,获得积分10
9秒前
sumire完成签到,获得积分10
9秒前
9秒前
烊烊坨完成签到,获得积分10
9秒前
汪格森完成签到,获得积分10
10秒前
10秒前
loong发布了新的文献求助10
11秒前
YSY发布了新的文献求助10
11秒前
12秒前
12秒前
聂学雨发布了新的文献求助10
13秒前
马保国发布了新的文献求助10
13秒前
一直在么么哒完成签到,获得积分10
13秒前
13秒前
李有钱发布了新的文献求助10
14秒前
iufan发布了新的文献求助10
16秒前
明理寄云应助derlun采纳,获得10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134472
求助须知:如何正确求助?哪些是违规求助? 2785402
关于积分的说明 7772258
捐赠科研通 2441051
什么是DOI,文献DOI怎么找? 1297713
科研通“疑难数据库(出版商)”最低求助积分说明 625042
版权声明 600813