Statistical analysis of one-compartment pharmacokinetic models with drug adherence

药代动力学 舱室(船) 药品 药理学 统计分析 医学 计算机科学 数学 统计 地质学 海洋学
作者
Dingding Yan,Xiaotian Wu,Sanyi Tang
出处
期刊:Journal of Pharmacokinetics and Pharmacodynamics [Springer Science+Business Media]
卷期号:49 (2): 209-225 被引量:4
标识
DOI:10.1007/s10928-021-09794-5
摘要

Pharmacokinetics is a scientific branch of pharmacology that describes the time course of drug concentration within a living organism and helps the scientific decision-making of potential drug candidates. However, the classical pharmacokinetic models with the eliminations of zero-order, first-order and saturated Michaelis-Menten processes, assume that patients perfectly follow drug regimens during drug treatment, and the significant factor of patients' drug adherence is not taken into account. In this study, therefore, considering the random change of dosage at the fixed dosing time interval, we reformulate the classical deterministic one-compartment pharmacokinetic models to the framework of stochastic, and analyze their qualitative properties including the expectation and variance of the drug concentration, existence of limit drug distribution, and the stochastic properties such as transience and recurrence. In addition, we carry out sensitivity analysis of drug adherence-related parameters to the key values like expectation and variance, especially for the impact on the lowest and highest steady state drug concentrations (i.e. the therapeutic window). Our findings can provide an important theoretical guidance for the variability of drug concentration and help the optimal design of medication regimens. Moreover, The developed models in this paper can support for the potential study of the impact of drug adherence on long-term treatment for chronic diseases like HIV, by integrating disease models and the stochastic PK models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
muzi871203完成签到,获得积分10
1秒前
全菌的DEPC水完成签到,获得积分10
1秒前
2秒前
daidaimumu发布了新的文献求助10
2秒前
2秒前
鸣笛应助枫1538采纳,获得50
3秒前
大洁发布了新的文献求助10
3秒前
JL完成签到,获得积分10
4秒前
zjw1997发布了新的文献求助30
4秒前
Lucas应助SUnnnnn采纳,获得10
5秒前
6秒前
胖心怡完成签到,获得积分10
7秒前
8秒前
goenkrrj完成签到,获得积分10
8秒前
8秒前
chun发布了新的文献求助10
8秒前
zyl发布了新的文献求助10
9秒前
9秒前
9秒前
吕创坤完成签到,获得积分10
10秒前
tt发布了新的文献求助10
11秒前
wh完成签到,获得积分10
11秒前
11秒前
goenkrrj发布了新的文献求助10
11秒前
keyaner发布了新的文献求助10
12秒前
Liskiat2021完成签到,获得积分10
12秒前
YamDaamCaa应助N0V1CE采纳,获得50
12秒前
airslake完成签到,获得积分10
13秒前
怡然映之完成签到,获得积分10
14秒前
poppy发布了新的文献求助10
14秒前
ScholarZmm完成签到,获得积分10
14秒前
Liskiat2021发布了新的文献求助10
15秒前
斯文败类应助zyl采纳,获得10
17秒前
SUnnnnn完成签到,获得积分20
19秒前
tt完成签到,获得积分10
19秒前
21秒前
半夏完成签到,获得积分10
22秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969917
求助须知:如何正确求助?哪些是违规求助? 3514626
关于积分的说明 11175060
捐赠科研通 3249928
什么是DOI,文献DOI怎么找? 1795165
邀请新用户注册赠送积分活动 875617
科研通“疑难数据库(出版商)”最低求助积分说明 804891