光催化
材料科学
光电流
介电谱
傅里叶变换红外光谱
甲基橙
光致发光
光化学
化学工程
光电子学
化学
有机化学
物理化学
工程类
催化作用
电化学
电极
作者
Jiaqi Zhang,Li Jin,Pengyuan Wang
标识
DOI:10.1002/pssa.202100322
摘要
Herein, perylene imide (PTCDI) is used as a sensitizer to compound with ZnO through solution treatment. Ultraviolet−visible diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy, and Fourier infrared (IR) spectroscopy analysis of the structure and optical properties of the samples shows that the organic semiconductor molecules PTCDI and ZnO have complexes. Analysis of the photoelectric properties of the samples by photocurrent and impedance (EIS) shows that the introduction of PTCDI has a significant inhibitory effect on the recombination of photogenerated electron−hole pairs. Photocatalysis experiments show that under the same conditions, the degradation rates of PTCDI/ZnO composites for methyl orange and methylene blue reach 92% and 99.5%. At the same time, in the photocatalytic removal of the NO test, the PTCDI/ZnO composite material also shows better photocatalytic performance than ZnO. The PTCDI/ZnO composite material can remove 66% of NO within 12 min. This is attributed to the combination of PTCDI and ZnO, which greatly improves the separation efficiency of photogenerated electron−hole pairs, thereby improving the photocatalytic performance of the composite material. It is worth noting that the synthesized PTCDI/ZnO composites not only show excellent photocatalytic performance in solid−liquid systems and gas−solid systems, but also show good photocatalytic stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI