A Review on Recent Machine Learning Algorithms Used in CAD diagnosis

计算机辅助设计 机器学习 人工智能 决策树 支持向量机 梯度升压 算法 计算机科学 朴素贝叶斯分类器 随机森林 冠状动脉疾病 Boosting(机器学习) 逻辑回归 统计分类 接收机工作特性 分类器(UML) 内科学 医学 工程类 工程制图
作者
Geetha Pratyusha Miriyala,Arun Kumar Sinha,Dushantha Nalin K. Jayakody,Abhishek Sharma
标识
DOI:10.1109/iciafs52090.2021.9605854
摘要

Coronary Artery Disease (CAD) is a cardiovascular disease that has the highest mortality rate. The non-invasive method for diagnosing CAD is coronary angiography which is expensive and exposes the patient to radiation. The present scenario for diagnosing CAD has motivated researchers to analyze and diagnose the disease using Machine Learning (ML) algorithms. In this work, the efficacy of various ML algorithms used to diagnose CAD disease is presented and compared. The proposed methodology aims to train the dataset using algorithms namely: K-Nearest Neighbor, Support Vector Machine, Logistic Regression, Naïve Bayes, Decision Tree, Extreme Gradient Boosting, Random Forest, Extra Tree Classifier, and Light Gradient Boosting machine, to achieve accuracy for diagnosing the CAD. The experimental results are validated in the simulation environment, and the conclusions were drawn from the performance indices, i.e., Accuracy, Sensitivity, Specificity, Precision, F1-Score, and Binary cross-entropy cost function. The meta-analysis shows that Light Gradient Machine achieves an accuracy of 93.36%, which is the highest among other ML algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
cjl应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
核桃应助科研通管家采纳,获得30
1秒前
Hello应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
能干巨人应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
核桃应助科研通管家采纳,获得30
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
momo应助科研通管家采纳,获得10
2秒前
2秒前
CodeCraft应助宋礼采纳,获得10
2秒前
2秒前
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711679
求助须知:如何正确求助?哪些是违规求助? 5205113
关于积分的说明 15264986
捐赠科研通 4863917
什么是DOI,文献DOI怎么找? 2611005
邀请新用户注册赠送积分活动 1561363
关于科研通互助平台的介绍 1518685