Multilevel Attention Networks and Policy Reinforcement Learning for Image Caption Generation

隐藏字幕 强化学习 计算机科学 人工智能 卷积神经网络 任务(项目管理) 图像(数学) 人工神经网络 光学(聚焦) 对象(语法) 机器学习 物理 管理 光学 经济
作者
Zhibo Zhou,Xiaoming Zhang,Zhoujun Li,Feiran Huang,Jie Xu
出处
期刊:Big data [Mary Ann Liebert, Inc.]
卷期号:10 (6): 481-492 被引量:4
标识
DOI:10.1089/big.2021.0049
摘要

The analysis of large-scale multimodal data has become very popular recently. Image captioning, whose goal is to describe the content of image with natural language automatically, is an essential and challenging task in artificial intelligence. Commonly, most existing image caption methods utilize the mixture of Convolutional Neural Network and Recurrent Neural Network framework. These methods either pay attention to global representation at the image level or only focus on the specific concepts, such as regions and objects. To make the most of characteristics about a given image, in this study, we present a novel model named Multilevel Attention Networks and Policy Reinforcement Learning for image caption generation. Specifically, our model is composed of a multilevel attention network module and a policy reinforcement learning module. In the multilevel attention network, the object-attention network aims to capture global and local details about objects, whereas the region-attention network obtains global and local features about regions. After that, a policy reinforcement learning algorithm is adopted to overcome the exposure bias problem in the training phase and solve the loss-evaluation mismatching problem at the caption generation stage. With the attention network and policy algorithm, our model can automatically generate accurate and natural sentences for any particular image. We carry out extensive experiments on the MSCOCO and Flickr30k data sets, demonstrating that our model is superior to other competitive methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凉风送信完成签到,获得积分10
2秒前
coco发布了新的文献求助10
3秒前
科研人完成签到 ,获得积分10
3秒前
Mao完成签到,获得积分10
4秒前
4秒前
conny应助tao采纳,获得10
4秒前
anna1992完成签到 ,获得积分10
5秒前
jar7989完成签到,获得积分10
7秒前
单纯访枫完成签到 ,获得积分10
7秒前
aurora完成签到 ,获得积分10
8秒前
kingwill应助Jc采纳,获得20
9秒前
xi发布了新的文献求助10
9秒前
苗广山完成签到 ,获得积分10
9秒前
9秒前
文献完成签到,获得积分10
9秒前
高高的从波完成签到,获得积分10
9秒前
Brian发布了新的文献求助200
10秒前
不是省油的灯完成签到,获得积分10
11秒前
背后飞松完成签到 ,获得积分10
11秒前
falcon完成签到,获得积分10
12秒前
12秒前
邓佳鑫Alan举报连长求助涉嫌违规
13秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
打打应助科研通管家采纳,获得10
14秒前
cdercder应助科研通管家采纳,获得20
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得30
14秒前
14秒前
科研通AI5应助科研通管家采纳,获得30
14秒前
pcyang完成签到,获得积分10
14秒前
14秒前
三三完成签到,获得积分10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
ttttt应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得20
15秒前
15秒前
15秒前
15秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3709324
求助须知:如何正确求助?哪些是违规求助? 3257397
关于积分的说明 9904726
捐赠科研通 2970266
什么是DOI,文献DOI怎么找? 1629147
邀请新用户注册赠送积分活动 772463
科研通“疑难数据库(出版商)”最低求助积分说明 743850