Multilevel Attention Networks and Policy Reinforcement Learning for Image Caption Generation

隐藏字幕 强化学习 计算机科学 人工智能 卷积神经网络 任务(项目管理) 图像(数学) 人工神经网络 光学(聚焦) 对象(语法) 机器学习 物理 管理 光学 经济
作者
Zhibo Zhou,Xiaoming Zhang,Zhoujun Li,Feiran Huang,Jie Xu
出处
期刊:Big data [Mary Ann Liebert, Inc.]
卷期号:10 (6): 481-492 被引量:6
标识
DOI:10.1089/big.2021.0049
摘要

The analysis of large-scale multimodal data has become very popular recently. Image captioning, whose goal is to describe the content of image with natural language automatically, is an essential and challenging task in artificial intelligence. Commonly, most existing image caption methods utilize the mixture of Convolutional Neural Network and Recurrent Neural Network framework. These methods either pay attention to global representation at the image level or only focus on the specific concepts, such as regions and objects. To make the most of characteristics about a given image, in this study, we present a novel model named Multilevel Attention Networks and Policy Reinforcement Learning for image caption generation. Specifically, our model is composed of a multilevel attention network module and a policy reinforcement learning module. In the multilevel attention network, the object-attention network aims to capture global and local details about objects, whereas the region-attention network obtains global and local features about regions. After that, a policy reinforcement learning algorithm is adopted to overcome the exposure bias problem in the training phase and solve the loss-evaluation mismatching problem at the caption generation stage. With the attention network and policy algorithm, our model can automatically generate accurate and natural sentences for any particular image. We carry out extensive experiments on the MSCOCO and Flickr30k data sets, demonstrating that our model is superior to other competitive methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荷欢笙完成签到,获得积分10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
ED应助科研通管家采纳,获得10
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
1秒前
今后应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
无花果应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
穆振家发布了新的文献求助30
3秒前
齐天大圣应助我不爱池鱼采纳,获得20
3秒前
3秒前
3秒前
诗图发布了新的文献求助10
5秒前
甜甜圈发布了新的文献求助10
6秒前
6秒前
脆脆鲨完成签到,获得积分10
7秒前
CipherSage应助张兆采纳,获得10
9秒前
9秒前
10秒前
11秒前
Akim应助lxh采纳,获得10
11秒前
11秒前
齐天大圣应助晴烟ZYM采纳,获得30
12秒前
zxunxia完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992562
求助须知:如何正确求助?哪些是违规求助? 3533545
关于积分的说明 11262757
捐赠科研通 3273163
什么是DOI,文献DOI怎么找? 1805959
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809513