Optimal inspection and maintenance planning for deteriorating structural components through dynamic Bayesian networks and Markov decision processes

部分可观测马尔可夫决策过程 计算机科学 马尔可夫决策过程 数学优化 背景(考古学) 启发式 时间范围 动态贝叶斯网络 动态决策 贝叶斯概率 运筹学 马尔可夫过程 马尔可夫链 机器学习 人工智能 马尔可夫模型 工程类 数学 统计 生物 古生物学
作者
Pablo G. Morato,Konstantinos G. Papakonstantinou,C.P. Andriotis,Jannie Sønderkær Nielsen,Philippe Rigo
出处
期刊:Structural Safety [Elsevier BV]
卷期号:94: 102140-102140 被引量:43
标识
DOI:10.1016/j.strusafe.2021.102140
摘要

Civil and maritime engineering systems, among others, from bridges to offshore platforms and wind turbines, must be efficiently managed as they are exposed to deterioration mechanisms throughout their operational life, such as fatigue or corrosion. Identifying optimal inspection and maintenance policies demands the solution of a complex sequential decision-making problem under uncertainty, with the main objective of efficiently controlling the risk associated with structural failures. Addressing this complexity, risk-based inspection planning methodologies, supported often by dynamic Bayesian networks, evaluate a set of pre-defined heuristic decision rules to reasonably simplify the decision problem. However, the resulting policies may be compromised by the limited space considered in the definition of the decision rules. Avoiding this limitation, Partially Observable Markov Decision Processes (POMDPs) provide a principled mathematical methodology for stochastic optimal control under uncertain action outcomes and observations, in which the optimal actions are prescribed as a function of the entire, dynamically updated, state probability distribution. In this paper, we combine dynamic Bayesian networks with POMDPs in a joint framework for optimal inspection and maintenance planning, and we provide the formulation for developing both infinite and finite horizon POMDPs in a structural reliability context. The proposed methodology is implemented and tested for the case of a structural component subject to fatigue deterioration, demonstrating the capability of state-of-the-art point-based POMDP solvers for solving the underlying planning optimization problem. Within the numerical experiments, POMDP and heuristic-based policies are thoroughly compared, and results showcase that POMDPs achieve substantially lower costs as compared to their counterparts, even for traditional problem settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pipi发布了新的文献求助20
1秒前
小落发布了新的文献求助10
1秒前
2秒前
2秒前
zhi芝完成签到 ,获得积分10
2秒前
ironsilica发布了新的文献求助10
2秒前
重要问筠完成签到,获得积分10
2秒前
XPN完成签到,获得积分10
2秒前
2秒前
Qiuju完成签到,获得积分10
2秒前
王彤彤完成签到,获得积分10
2秒前
小李完成签到,获得积分10
3秒前
独特觅儿完成签到,获得积分10
3秒前
3秒前
啊啊啊啊完成签到,获得积分10
3秒前
u深度完成签到 ,获得积分10
4秒前
龙龙ff11_发布了新的文献求助10
4秒前
背后的千柳完成签到,获得积分10
4秒前
Square完成签到,获得积分10
4秒前
LLLi完成签到,获得积分10
5秒前
Maxpan发布了新的文献求助10
5秒前
LW完成签到,获得积分10
5秒前
Ethan发布了新的文献求助10
5秒前
大力的猕猴桃完成签到,获得积分10
5秒前
十年完成签到,获得积分10
6秒前
充电宝应助务实天德采纳,获得10
6秒前
Hello应助xin6688采纳,获得30
6秒前
凌雪柯完成签到,获得积分10
6秒前
安静的兔子完成签到,获得积分10
7秒前
所所应助好看的鸵鸟采纳,获得10
7秒前
just发布了新的文献求助10
7秒前
yuyi完成签到,获得积分10
7秒前
Orange应助啾啾尼泊尔采纳,获得10
7秒前
风中夜天完成签到 ,获得积分10
8秒前
andou完成签到,获得积分10
8秒前
9秒前
雪下卧眠完成签到,获得积分10
11秒前
wangyy65完成签到 ,获得积分10
11秒前
Lucas应助just采纳,获得10
11秒前
吼吼哈哈完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953608
求助须知:如何正确求助?哪些是违规求助? 3499327
关于积分的说明 11094832
捐赠科研通 3229935
什么是DOI,文献DOI怎么找? 1785767
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478