Optimal inspection and maintenance planning for deteriorating structural components through dynamic Bayesian networks and Markov decision processes

部分可观测马尔可夫决策过程 计算机科学 马尔可夫决策过程 数学优化 背景(考古学) 启发式 时间范围 动态贝叶斯网络 动态决策 贝叶斯概率 运筹学 马尔可夫过程 马尔可夫链 机器学习 人工智能 马尔可夫模型 工程类 数学 统计 生物 古生物学
作者
Pablo G. Morato,Konstantinos G. Papakonstantinou,C.P. Andriotis,Jannie Sønderkær Nielsen,Philippe Rigo
出处
期刊:Structural Safety [Elsevier]
卷期号:94: 102140-102140 被引量:43
标识
DOI:10.1016/j.strusafe.2021.102140
摘要

Civil and maritime engineering systems, among others, from bridges to offshore platforms and wind turbines, must be efficiently managed as they are exposed to deterioration mechanisms throughout their operational life, such as fatigue or corrosion. Identifying optimal inspection and maintenance policies demands the solution of a complex sequential decision-making problem under uncertainty, with the main objective of efficiently controlling the risk associated with structural failures. Addressing this complexity, risk-based inspection planning methodologies, supported often by dynamic Bayesian networks, evaluate a set of pre-defined heuristic decision rules to reasonably simplify the decision problem. However, the resulting policies may be compromised by the limited space considered in the definition of the decision rules. Avoiding this limitation, Partially Observable Markov Decision Processes (POMDPs) provide a principled mathematical methodology for stochastic optimal control under uncertain action outcomes and observations, in which the optimal actions are prescribed as a function of the entire, dynamically updated, state probability distribution. In this paper, we combine dynamic Bayesian networks with POMDPs in a joint framework for optimal inspection and maintenance planning, and we provide the formulation for developing both infinite and finite horizon POMDPs in a structural reliability context. The proposed methodology is implemented and tested for the case of a structural component subject to fatigue deterioration, demonstrating the capability of state-of-the-art point-based POMDP solvers for solving the underlying planning optimization problem. Within the numerical experiments, POMDP and heuristic-based policies are thoroughly compared, and results showcase that POMDPs achieve substantially lower costs as compared to their counterparts, even for traditional problem settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形的紫菜完成签到,获得积分10
刚刚
23132发布了新的文献求助10
1秒前
cora完成签到,获得积分10
2秒前
放眼天下完成签到 ,获得积分10
3秒前
文毛完成签到,获得积分10
3秒前
3秒前
4秒前
兴奋的问旋完成签到,获得积分10
4秒前
张张完成签到,获得积分10
4秒前
陈文学完成签到,获得积分10
5秒前
一一发布了新的文献求助10
5秒前
bkagyin应助潇洒的冷玉采纳,获得10
6秒前
通~发布了新的文献求助10
6秒前
6秒前
芒果完成签到,获得积分10
6秒前
7秒前
cly3397完成签到,获得积分10
7秒前
开心发布了新的文献求助10
7秒前
7秒前
少年发布了新的文献求助10
8秒前
天天快乐应助阿毛采纳,获得10
8秒前
Jenny应助狂野的以珊采纳,获得10
8秒前
9秒前
9秒前
10秒前
11秒前
研友_LMNjkn发布了新的文献求助10
11秒前
ding应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
yizhiGao应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
pinging应助科研通管家采纳,获得10
12秒前
唠叨的月光完成签到,获得积分10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
清爽老九应助科研通管家采纳,获得20
12秒前
科研通AI5应助科研通管家采纳,获得20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794