Optimal inspection and maintenance planning for deteriorating structural components through dynamic Bayesian networks and Markov decision processes

部分可观测马尔可夫决策过程 计算机科学 马尔可夫决策过程 数学优化 背景(考古学) 启发式 时间范围 动态贝叶斯网络 动态决策 贝叶斯概率 运筹学 马尔可夫过程 马尔可夫链 机器学习 人工智能 马尔可夫模型 工程类 数学 统计 生物 古生物学
作者
Pablo G. Morato,Konstantinos G. Papakonstantinou,C.P. Andriotis,Jannie Sønderkær Nielsen,Philippe Rigo
出处
期刊:Structural Safety [Elsevier]
卷期号:94: 102140-102140 被引量:43
标识
DOI:10.1016/j.strusafe.2021.102140
摘要

Civil and maritime engineering systems, among others, from bridges to offshore platforms and wind turbines, must be efficiently managed as they are exposed to deterioration mechanisms throughout their operational life, such as fatigue or corrosion. Identifying optimal inspection and maintenance policies demands the solution of a complex sequential decision-making problem under uncertainty, with the main objective of efficiently controlling the risk associated with structural failures. Addressing this complexity, risk-based inspection planning methodologies, supported often by dynamic Bayesian networks, evaluate a set of pre-defined heuristic decision rules to reasonably simplify the decision problem. However, the resulting policies may be compromised by the limited space considered in the definition of the decision rules. Avoiding this limitation, Partially Observable Markov Decision Processes (POMDPs) provide a principled mathematical methodology for stochastic optimal control under uncertain action outcomes and observations, in which the optimal actions are prescribed as a function of the entire, dynamically updated, state probability distribution. In this paper, we combine dynamic Bayesian networks with POMDPs in a joint framework for optimal inspection and maintenance planning, and we provide the formulation for developing both infinite and finite horizon POMDPs in a structural reliability context. The proposed methodology is implemented and tested for the case of a structural component subject to fatigue deterioration, demonstrating the capability of state-of-the-art point-based POMDP solvers for solving the underlying planning optimization problem. Within the numerical experiments, POMDP and heuristic-based policies are thoroughly compared, and results showcase that POMDPs achieve substantially lower costs as compared to their counterparts, even for traditional problem settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
睡到自然醒完成签到 ,获得积分10
刚刚
烂漫书包完成签到,获得积分10
刚刚
超文献发布了新的文献求助10
刚刚
wanci应助忧郁绝音采纳,获得10
1秒前
九珥发布了新的文献求助10
3秒前
成哥完成签到,获得积分10
3秒前
4秒前
5秒前
景辣条应助希勤采纳,获得10
6秒前
简单奎发布了新的文献求助10
7秒前
Owen应助jl采纳,获得10
8秒前
星海殇完成签到 ,获得积分0
9秒前
桐桐应助风趣的烤鸡采纳,获得10
10秒前
orixero应助jkq采纳,获得10
10秒前
11秒前
大模型应助醉倒天瓢采纳,获得10
11秒前
冷冻不冷完成签到,获得积分10
12秒前
小二郎应助研友_842M4n采纳,获得10
12秒前
CipherSage应助OVERSEER采纳,获得10
12秒前
12秒前
小文完成签到,获得积分10
14秒前
稳重孤丝发布了新的文献求助10
14秒前
惜墨应助萍萍采纳,获得10
14秒前
muncy发布了新的文献求助10
17秒前
义气菠萝完成签到,获得积分10
17秒前
润泽完成签到,获得积分10
17秒前
cquank完成签到 ,获得积分10
18秒前
拖拖完成签到 ,获得积分10
18秒前
华仔应助iuv采纳,获得10
19秒前
BruceQ完成签到 ,获得积分10
20秒前
jkq完成签到,获得积分10
20秒前
任白993完成签到,获得积分0
20秒前
Wells发布了新的文献求助10
22秒前
22秒前
大旭完成签到 ,获得积分10
22秒前
24秒前
furin001发布了新的文献求助10
24秒前
24秒前
25秒前
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137214
求助须知:如何正确求助?哪些是违规求助? 2788251
关于积分的说明 7785413
捐赠科研通 2444284
什么是DOI,文献DOI怎么找? 1299869
科研通“疑难数据库(出版商)”最低求助积分说明 625639
版权声明 601023