Optimal inspection and maintenance planning for deteriorating structural components through dynamic Bayesian networks and Markov decision processes

部分可观测马尔可夫决策过程 计算机科学 马尔可夫决策过程 数学优化 背景(考古学) 启发式 时间范围 动态贝叶斯网络 动态决策 贝叶斯概率 运筹学 马尔可夫过程 马尔可夫链 机器学习 人工智能 马尔可夫模型 工程类 数学 统计 生物 古生物学
作者
Pablo G. Morato,Konstantinos G. Papakonstantinou,C.P. Andriotis,Jannie Sønderkær Nielsen,Philippe Rigo
出处
期刊:Structural Safety [Elsevier BV]
卷期号:94: 102140-102140 被引量:43
标识
DOI:10.1016/j.strusafe.2021.102140
摘要

Civil and maritime engineering systems, among others, from bridges to offshore platforms and wind turbines, must be efficiently managed as they are exposed to deterioration mechanisms throughout their operational life, such as fatigue or corrosion. Identifying optimal inspection and maintenance policies demands the solution of a complex sequential decision-making problem under uncertainty, with the main objective of efficiently controlling the risk associated with structural failures. Addressing this complexity, risk-based inspection planning methodologies, supported often by dynamic Bayesian networks, evaluate a set of pre-defined heuristic decision rules to reasonably simplify the decision problem. However, the resulting policies may be compromised by the limited space considered in the definition of the decision rules. Avoiding this limitation, Partially Observable Markov Decision Processes (POMDPs) provide a principled mathematical methodology for stochastic optimal control under uncertain action outcomes and observations, in which the optimal actions are prescribed as a function of the entire, dynamically updated, state probability distribution. In this paper, we combine dynamic Bayesian networks with POMDPs in a joint framework for optimal inspection and maintenance planning, and we provide the formulation for developing both infinite and finite horizon POMDPs in a structural reliability context. The proposed methodology is implemented and tested for the case of a structural component subject to fatigue deterioration, demonstrating the capability of state-of-the-art point-based POMDP solvers for solving the underlying planning optimization problem. Within the numerical experiments, POMDP and heuristic-based policies are thoroughly compared, and results showcase that POMDPs achieve substantially lower costs as compared to their counterparts, even for traditional problem settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoshaoxia完成签到,获得积分10
刚刚
orixero应助yunyunya采纳,获得10
1秒前
dddjs完成签到,获得积分10
1秒前
今天只做一件事应助Wind采纳,获得10
2秒前
3秒前
3秒前
Akim应助景行行止采纳,获得10
3秒前
Tourist应助lucky采纳,获得10
4秒前
4秒前
SciGPT应助烟雨夕阳采纳,获得10
4秒前
酷波er应助1111111采纳,获得10
5秒前
欢喜的元霜完成签到,获得积分10
5秒前
简单小土豆完成签到,获得积分10
5秒前
7秒前
无私土豆发布了新的文献求助10
7秒前
无辜的蜗牛完成签到 ,获得积分10
7秒前
8秒前
8秒前
田様应助守得云开见月明采纳,获得10
9秒前
Hermione完成签到,获得积分10
9秒前
Echan发布了新的文献求助10
9秒前
小马甲应助11采纳,获得10
9秒前
边宇发布了新的文献求助10
9秒前
李大大完成签到,获得积分20
10秒前
Zhusy发布了新的文献求助10
11秒前
充电宝应助牂牂采纳,获得10
11秒前
浮游应助浪子采纳,获得10
12秒前
共享精神应助乐融融1采纳,获得10
12秒前
学术小白发布了新的文献求助10
12秒前
13秒前
无花果应助spring采纳,获得10
13秒前
YY完成签到,获得积分10
14秒前
15秒前
Jasper应助跳跃的静曼采纳,获得10
15秒前
hy完成签到,获得积分10
16秒前
16秒前
17秒前
冷艳访枫完成签到,获得积分10
17秒前
Lucien完成签到,获得积分10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286206
求助须知:如何正确求助?哪些是违规求助? 4439117
关于积分的说明 13820017
捐赠科研通 4320822
什么是DOI,文献DOI怎么找? 2371606
邀请新用户注册赠送积分活动 1367203
关于科研通互助平台的介绍 1330636