Optimal inspection and maintenance planning for deteriorating structural components through dynamic Bayesian networks and Markov decision processes

部分可观测马尔可夫决策过程 计算机科学 马尔可夫决策过程 数学优化 背景(考古学) 启发式 时间范围 动态贝叶斯网络 动态决策 贝叶斯概率 运筹学 马尔可夫过程 马尔可夫链 机器学习 人工智能 马尔可夫模型 工程类 数学 统计 生物 古生物学
作者
Pablo G. Morato,Konstantinos G. Papakonstantinou,C.P. Andriotis,Jannie Sønderkær Nielsen,Philippe Rigo
出处
期刊:Structural Safety [Elsevier BV]
卷期号:94: 102140-102140 被引量:43
标识
DOI:10.1016/j.strusafe.2021.102140
摘要

Civil and maritime engineering systems, among others, from bridges to offshore platforms and wind turbines, must be efficiently managed as they are exposed to deterioration mechanisms throughout their operational life, such as fatigue or corrosion. Identifying optimal inspection and maintenance policies demands the solution of a complex sequential decision-making problem under uncertainty, with the main objective of efficiently controlling the risk associated with structural failures. Addressing this complexity, risk-based inspection planning methodologies, supported often by dynamic Bayesian networks, evaluate a set of pre-defined heuristic decision rules to reasonably simplify the decision problem. However, the resulting policies may be compromised by the limited space considered in the definition of the decision rules. Avoiding this limitation, Partially Observable Markov Decision Processes (POMDPs) provide a principled mathematical methodology for stochastic optimal control under uncertain action outcomes and observations, in which the optimal actions are prescribed as a function of the entire, dynamically updated, state probability distribution. In this paper, we combine dynamic Bayesian networks with POMDPs in a joint framework for optimal inspection and maintenance planning, and we provide the formulation for developing both infinite and finite horizon POMDPs in a structural reliability context. The proposed methodology is implemented and tested for the case of a structural component subject to fatigue deterioration, demonstrating the capability of state-of-the-art point-based POMDP solvers for solving the underlying planning optimization problem. Within the numerical experiments, POMDP and heuristic-based policies are thoroughly compared, and results showcase that POMDPs achieve substantially lower costs as compared to their counterparts, even for traditional problem settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健康的小松鼠完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
黄大师完成签到,获得积分10
1秒前
wanci应助lipltsit采纳,获得10
2秒前
4秒前
薯条完成签到,获得积分10
4秒前
Lei发布了新的文献求助10
4秒前
威武的听露给威武的听露的求助进行了留言
4秒前
如意葶发布了新的文献求助10
5秒前
5秒前
linhuafeng完成签到,获得积分10
6秒前
朝花夕拾发布了新的文献求助10
6秒前
阳光的衫完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
TirionFecup完成签到,获得积分10
8秒前
朝夕之晖发布了新的文献求助30
8秒前
8秒前
可爱的函函应助陈思思采纳,获得10
8秒前
陈陈完成签到,获得积分10
8秒前
小白完成签到,获得积分10
8秒前
haofan17完成签到,获得积分0
9秒前
saga关注了科研通微信公众号
10秒前
10秒前
科目三应助如意葶采纳,获得10
11秒前
12秒前
纯真大侠发布了新的文献求助30
12秒前
wangkun090121发布了新的文献求助10
12秒前
12秒前
Miaomiao完成签到,获得积分10
13秒前
13秒前
everglow发布了新的文献求助30
14秒前
14秒前
聪明的阿呆完成签到,获得积分10
14秒前
烟花应助舒适大米采纳,获得10
14秒前
平生发布了新的文献求助10
14秒前
我我我发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559624
求助须知:如何正确求助?哪些是违规求助? 3986027
关于积分的说明 12341437
捐赠科研通 3656691
什么是DOI,文献DOI怎么找? 2014540
邀请新用户注册赠送积分活动 1049268
科研通“疑难数据库(出版商)”最低求助积分说明 937586