Optimal inspection and maintenance planning for deteriorating structural components through dynamic Bayesian networks and Markov decision processes

部分可观测马尔可夫决策过程 计算机科学 马尔可夫决策过程 数学优化 背景(考古学) 启发式 时间范围 动态贝叶斯网络 动态决策 贝叶斯概率 运筹学 马尔可夫过程 马尔可夫链 机器学习 人工智能 马尔可夫模型 工程类 数学 统计 生物 古生物学
作者
Pablo G. Morato,Konstantinos G. Papakonstantinou,C.P. Andriotis,Jannie Sønderkær Nielsen,Philippe Rigo
出处
期刊:Structural Safety [Elsevier]
卷期号:94: 102140-102140 被引量:43
标识
DOI:10.1016/j.strusafe.2021.102140
摘要

Civil and maritime engineering systems, among others, from bridges to offshore platforms and wind turbines, must be efficiently managed as they are exposed to deterioration mechanisms throughout their operational life, such as fatigue or corrosion. Identifying optimal inspection and maintenance policies demands the solution of a complex sequential decision-making problem under uncertainty, with the main objective of efficiently controlling the risk associated with structural failures. Addressing this complexity, risk-based inspection planning methodologies, supported often by dynamic Bayesian networks, evaluate a set of pre-defined heuristic decision rules to reasonably simplify the decision problem. However, the resulting policies may be compromised by the limited space considered in the definition of the decision rules. Avoiding this limitation, Partially Observable Markov Decision Processes (POMDPs) provide a principled mathematical methodology for stochastic optimal control under uncertain action outcomes and observations, in which the optimal actions are prescribed as a function of the entire, dynamically updated, state probability distribution. In this paper, we combine dynamic Bayesian networks with POMDPs in a joint framework for optimal inspection and maintenance planning, and we provide the formulation for developing both infinite and finite horizon POMDPs in a structural reliability context. The proposed methodology is implemented and tested for the case of a structural component subject to fatigue deterioration, demonstrating the capability of state-of-the-art point-based POMDP solvers for solving the underlying planning optimization problem. Within the numerical experiments, POMDP and heuristic-based policies are thoroughly compared, and results showcase that POMDPs achieve substantially lower costs as compared to their counterparts, even for traditional problem settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
隐形曼青应助123采纳,获得10
1秒前
科研通AI6应助苏莉婷采纳,获得10
2秒前
苗条的钻石应助雪雪啊采纳,获得10
2秒前
科研通AI6应助Hielo采纳,获得10
2秒前
浮游应助呆呆采纳,获得10
2秒前
3秒前
4秒前
斯文哈密瓜完成签到,获得积分10
5秒前
5秒前
5秒前
ray发布了新的文献求助10
5秒前
XXXTTT完成签到,获得积分10
5秒前
英俊的铭应助qwer采纳,获得10
6秒前
li发布了新的文献求助10
6秒前
6秒前
Psycho完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
隐形曼青应助ran采纳,获得10
7秒前
上官若男应助内向煎蛋采纳,获得10
8秒前
Akim应助T拐拐采纳,获得10
8秒前
9秒前
aodilee应助邱穗采纳,获得10
9秒前
王大雪发布了新的文献求助30
9秒前
10秒前
朱朱发布了新的文献求助10
11秒前
ktssly发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
14秒前
14秒前
Silence完成签到,获得积分0
14秒前
15秒前
Ava应助Jayee采纳,获得10
15秒前
lucky发布了新的文献求助20
15秒前
junjun发布了新的文献求助10
16秒前
李健应助Leon采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728