Markov Chain Monte Carlo-based Bayesian method for nonlinear stochastic model updating

马尔科夫蒙特卡洛 贝叶斯推理 算法 非线性系统 后验概率 贝叶斯概率 概率密度函数 计算机科学 蒙特卡罗方法 应用数学 大都会-黑斯廷斯算法 高斯过程 数学 数学优化 高斯分布 人工智能 统计 物理 量子力学
作者
Ya-Jie Ding,Zuo-Cai Wang,Genda Chen,Wei-Xin Ren,Xin Yu
出处
期刊:Journal of Sound and Vibration [Elsevier]
卷期号:520: 116595-116595 被引量:4
标识
DOI:10.1016/j.jsv.2021.116595
摘要

This paper proposes a Markov Chain Monte Carlo (MCMC)-based Bayesian method for nonlinear stochastic model updating by using the instantaneous characteristics of the structural dynamic responses. According to the discrete analytical mode decomposed method and Hilbert transform, the instantaneous characteristics of the mono-components are firstly extracted from the structural dynamic response and applied to the calculation of likelihood function. Then, the posterior probability density function associated with Bayesian theorem is derived under the assumption of Gaussian prior distribution by using instantaneous characteristics. Afterwards, to calculate the posterior probability density function and improve the sampling efficiency, the delayed rejection adaptive Metropolis-Hastings (DRAM) algorithm is implemented with the advantages of strong adaptive and fast convergence. In the process of Bayesian inference, the posterior samples generated by DRAM require vast quantities of finite element analysis to guarantee the accuracy. For reducing the computational cost, the response surface model is constructed to establish the mathematical regression model between the structural parameters and the theoretical dynamic responses. To validate the effectiveness and applicability of the proposed method, the numerical cases on a three-story nonlinear structure under earthquake excitation considering various noise level effects and an Iwan beam model with two types of excitations are simulated. In addition, an experimental validation on a ¼ scale, 3-story steel frame structure subjected to a series of earthquake excitations in the laboratory is also performed to further verify the proposed method. Both the numerical and experimental results demonstrate that the DRAM-based Bayesian method can be effectively used to update nonlinear stochastic models with a high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
卡戎529发布了新的文献求助10
3秒前
汉堡包应助mm采纳,获得10
4秒前
善良的书本应助夜倾心采纳,获得30
6秒前
高贵的惜霜完成签到,获得积分20
7秒前
狂野果汁发布了新的文献求助10
8秒前
chen完成签到,获得积分10
9秒前
9秒前
刘钱美子完成签到,获得积分10
9秒前
10秒前
香蕉梨愁完成签到,获得积分10
11秒前
爱静静应助高贵的惜霜采纳,获得10
12秒前
深情安青应助涂山路采纳,获得10
14秒前
16秒前
wenxiang发布了新的文献求助10
16秒前
16秒前
北木黎发布了新的文献求助10
16秒前
可爱的函函应助Vincent采纳,获得10
18秒前
mm发布了新的文献求助10
20秒前
haozi王完成签到,获得积分10
22秒前
31秒前
含蓄的依瑶完成签到 ,获得积分10
31秒前
今后应助科研通管家采纳,获得30
31秒前
脑洞疼应助科研通管家采纳,获得30
31秒前
无花果应助科研通管家采纳,获得10
31秒前
31秒前
我是老大应助科研通管家采纳,获得10
31秒前
31秒前
CipherSage应助轩轩轩采纳,获得10
33秒前
涂山路发布了新的文献求助10
36秒前
宇是眼中星眸完成签到 ,获得积分10
36秒前
xianglily完成签到 ,获得积分10
37秒前
Ammy完成签到,获得积分10
38秒前
莫离发布了新的文献求助10
39秒前
40秒前
41秒前
wanci应助狂野果汁采纳,获得10
43秒前
英姑应助Tomato采纳,获得30
45秒前
万能图书馆应助刘星星采纳,获得10
45秒前
46秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789658
关于积分的说明 7791830
捐赠科研通 2445993
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079