Data-Driven Fault Diagnosis of Lithium-Ion Battery Overdischarge in Electric Vehicles

电压 电池(电) 切断 电气工程 涓流充电 锂离子电池 断层(地质) 计算机科学 汽车工程 工程类 物理 功率(物理) 量子力学 地质学 地震学
作者
Naifeng Gan,Zhenyu Sun,Zhaosheng Zhang,Shiqi Xu,Peng Liu,Zian Qin
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:37 (4): 4575-4588 被引量:105
标识
DOI:10.1109/tpel.2021.3121701
摘要

The overdischarge can significantly degrade a lithium-ion (Li-ion) battery's lifetime. Therefore, it is important to detect the overdischarge and prevent severe damage of the Li-ion battery. Depending on the battery technology, there is a minimum voltage (cutoff voltage) that the battery is allowed to be discharged in common practice. Once the battery voltage is below the cutoff voltage, it is considered as overdischarge. However, overdischarge will not lead to immediate failure of the battery, and if it is not detected, the battery voltage can increase above the cutoff voltage during charging process. How to detect an overdischarge has happened, while the current voltage is larger than the cutoff voltage, thus becomes very challenging. In this article, a machine learning based two-layer overdischarge fault diagnosis strategy for Li-ion batteries in electric vehicles is proposed. The first layer is to detect the overdischarge by comparing the battery voltage with cutoff voltage, like what is utilized in common practice. If the battery voltage is larger than the cutoff voltage, the second layer, which is a detection approach based on eXtreme Gradient Boosting algorithm, is triggered. The second layer is employed to detect the previous overdischarge. The proposed method is validated by real electric vehicle data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
后夜发布了新的文献求助10
刚刚
刚刚
刚刚
科目三应助咔咔采纳,获得10
刚刚
充电宝应助WANGJD采纳,获得10
1秒前
1秒前
科研通AI6应助jyyg采纳,获得30
1秒前
pcr163应助Angie采纳,获得50
2秒前
2秒前
小猴发布了新的文献求助10
2秒前
DRHSK发布了新的文献求助20
3秒前
Spinnin完成签到,获得积分10
4秒前
国足预备员完成签到 ,获得积分10
4秒前
ding应助piers采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
张德洁完成签到,获得积分10
5秒前
昭玥完成签到,获得积分10
6秒前
6秒前
6秒前
顾矜应助咸鱼采纳,获得10
6秒前
领导范儿应助小王采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得30
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
Ava应助xhDoc采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
常常完成签到,获得积分0
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
脂蛋白抗原应助杨老师采纳,获得10
6秒前
Orange应助后夜采纳,获得10
6秒前
6秒前
666JACS完成签到,获得积分20
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
chenhuiwan应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
科研豆包完成签到 ,获得积分10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600326
求助须知:如何正确求助?哪些是违规求助? 4010520
关于积分的说明 12416659
捐赠科研通 3690261
什么是DOI,文献DOI怎么找? 2034228
邀请新用户注册赠送积分活动 1067656
科研通“疑难数据库(出版商)”最低求助积分说明 952475