Examinee-Examiner Network: Weakly Supervised Accurate Coronary Lumen Segmentation Using Centerline Constraint

分割 人工智能 管腔(解剖学) 计算机科学 切割 计算机视觉 模式识别(心理学) 医学 图像分割 内科学
作者
Yaolei Qi,Han Xu,Yuting He,Guanyu Li,Zehang Li,Youyong Kong,Jean-Louis Coatrieux,Huazhong Shu,Guanyu Yang,Shengxian Tu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 9429-9441 被引量:9
标识
DOI:10.1109/tip.2021.3125490
摘要

Accurate coronary lumen segmentation on coronary-computed tomography angiography (CCTA) images is crucial for quantification of coronary stenosis and the subsequent computation of fractional flow reserve. Many factors including difficulty in labeling coronary lumens, various morphologies in stenotic lesions, thin structures and small volume ratio with respect to the imaging field complicate the task. In this work, we fused the continuity topological information of centerlines which are easily accessible, and proposed a novel weakly supervised model, Examinee-Examiner Network (EE-Net), to overcome the challenges in automatic coronary lumen segmentation. First, the EE-Net was proposed to address the fracture in segmentation caused by stenoses by combining the semantic features of lumens and the geometric constraints of continuous topology obtained from the centerlines. Then, a Centerline Gaussian Mask Module was proposed to deal with the insensitiveness of the network to the centerlines. Subsequently, a weakly supervised learning strategy, Examinee-Examiner Learning, was proposed to handle the weakly supervised situation with few lumen labels by using our EE-Net to guide and constrain the segmentation with customized prior conditions. Finally, a general network layer, Drop Output Layer, was proposed to adapt to the class imbalance by dropping well-segmented regions and weights the classes dynamically. Extensive experiments on two different data sets demonstrated that our EE-Net has good continuity and generalization ability on coronary lumen segmentation task compared with several widely used CNNs such as 3D-UNet. The results revealed our EE-Net with great potential for achieving accurate coronary lumen segmentation in patients with coronary artery disease. Code at http://github.com/qiyaolei/Examinee-Examiner-Network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2333完成签到,获得积分10
1秒前
十三完成签到 ,获得积分10
2秒前
NexusExplorer应助626采纳,获得10
2秒前
无花果应助程荷芬采纳,获得10
2秒前
啦啦啦发布了新的文献求助10
4秒前
陈住气完成签到,获得积分10
9秒前
李健的小迷弟应助weiy采纳,获得10
11秒前
icy_cyr发布了新的文献求助10
12秒前
djf完成签到,获得积分10
13秒前
乐乐应助卤蛋今天没学习采纳,获得10
14秒前
14秒前
14秒前
14秒前
16秒前
17秒前
元气少女猪刚鬣应助zz采纳,获得10
17秒前
boytoa完成签到 ,获得积分10
18秒前
bystanding发布了新的文献求助10
18秒前
glomming发布了新的文献求助30
19秒前
小帅发布了新的文献求助10
20秒前
20秒前
庄庄发布了新的文献求助10
22秒前
22秒前
22秒前
薯条发布了新的文献求助20
23秒前
Xwu发布了新的文献求助20
23秒前
23秒前
24秒前
CipherSage应助yangli采纳,获得10
24秒前
duoduo完成签到,获得积分10
25秒前
小白白完成签到,获得积分10
25秒前
25秒前
小帅完成签到,获得积分10
26秒前
灵泽发布了新的文献求助10
27秒前
小白白发布了新的文献求助10
27秒前
Drogoo发布了新的文献求助10
28秒前
28秒前
29秒前
咻咻完成签到,获得积分10
29秒前
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998808
求助须知:如何正确求助?哪些是违规求助? 3538300
关于积分的说明 11273823
捐赠科研通 3277274
什么是DOI,文献DOI怎么找? 1807487
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075