微电网
模型预测控制
控制理论(社会学)
二次规划
计算机科学
解算器
电压
观察员(物理)
电流(流体)
节点(物理)
控制器(灌溉)
线性规划
控制工程
控制(管理)
数学优化
工程类
电气工程
算法
数学
农学
人工智能
物理
程序设计语言
生物
结构工程
量子力学
作者
Lalit Kishore Marepalli,Kaushik Gajula,Luis Herrera
标识
DOI:10.1109/ecce47101.2021.9595493
摘要
In this paper, a Model Predictive Control (MPC) technique is presented for the control of energy sources in a dc microgrid. Proportional current sharing is achieved, where the current of each source is shared appropriately by the weight terms. Similarly, a cost function is presented to achieve average voltage of all the source nodes in the network. In addition, a Luenberger observer is designed to estimate the unknown states and disturbances. The centralized MPC optimization problem is then placed in quadratic programming form and solved using the mpcqp solver, which allows for code generation and real time implementation using an embedded system. A four node dc microgrid model is used as a case study. Real-time simulation using Opal RT is shown demonstrating the feasibility of online implementation of the controller.
科研通智能强力驱动
Strongly Powered by AbleSci AI