Using Spatial Transcriptomics to Reveal Fetal Liver Hematopoietic Stem Cell-Niche Interactions

生物 造血 干细胞 转录组 细胞生物学 利基 肝星状细胞 骨髓 红细胞生成 免疫学 内科学 遗传学 医学 内分泌学 基因表达 基因 贫血 生态学
作者
Ruochen Dong,Jonathon Russell,Seth Malloy,Kate Hall,Sarah E. Smith,Hua Li,Yongfu Wang,Anoja Perera,Sean McKinney,Brian D. Slaughter,Jay R. Unruh,Xi He,Linheng Li
出处
期刊:Blood [American Society of Hematology]
卷期号:138 (Supplement 1): 3284-3284
标识
DOI:10.1182/blood-2021-153748
摘要

Abstract The hematopoietic stem cell (HSC) microenvironment, termed the niche, supports the proliferation, self-renewal, and differentiation abilities of HSCs. The definitive HSCs emerge from the hemogenic endothelium in the aorta-gonad-mesonephros (AGM) region after E11.5, and then migrate to the fetal liver after E12.5 for expansion. After E17.5, HSCs migrate to the bone marrow and reside in the bone marrow for the postnatal stage and adulthood. Because the fetal liver is thought to be a harbor for the rapid expansion of HSCs, numerous studies have focused on the fetal liver HSC niche in the search for novel niche factors and niche cells that support HSC expansion. However, to our knowledge, there are no successes in translating the niche factors to a clinical application for the expansion of HSCs ex vivo. In this study, we are using cutting-edge spatial transcriptomics to comprehensively study the transcriptomics and interactions between HSCs and the niche cells in the fetal liver, and in search of the niche cells and factors for HSC expansion. To understand the spatial distribution and interactions between HSCs and niche cells in the fetal liver, we introduced 2 spatial transcriptomic methods, slide-seq, and 10x Visium, in our study on E14.5 mouse fetal liver. By integrating with a parallel single-cell sequencing analysis, we revealed the spatial transcriptomics of HSCs and potential niche cells, including hepatoblasts, endothelium cells, macrophages, megakaryocytes, and hepatic stellate cells/perivascular mesenchymal cells (PMCs) in E14.5 mouse fetal liver. Interestingly, we found that the PMCs were characterized by enriched N-cadherin expression. Both slide-seq and 10x Visium showed that the N-cadherin-expressing PMCs are enriched in the portal vessel area. Importantly, the majority of fetal liver HSCs are in close proximity to N-cadherin-expressing PMCs, indicating a supportive role of N-cadherin-expressing PMCs in HSC maintenance. Subsequent CellPhoneDB (CPDB) analysis demonstrated that the N-cadherin-expressing PMCs are major niche-signaling senders with an enriched expression of niche factors, such as CXCL12 and KITL, and stemness pathway-related ligands, such as IGF1, IGF2, TGFβ2, TGFβ3, JAG2, and DLK1, indicating N-cadherin-expressing PMCs could be the major niche cells in supporting HSCs in the fetal liver. This finding was consistent with our previous finding that N-cadherin-expressing bone and marrow stromal progenitor cells can maintain reserve HSCs in the adult bone marrow. Moreover, CPDB analysis indicated that other potential niche cells, such as endothelium cells, macrophages, and megakaryocytes, may support HSCs in different signal transduction pathways. For example, endothelium cells have an enriched expression of KITL, IGF2, DLL1, TGFβ1, and TGFβ2; macrophages have enriched expression of KITL, IFNγ, and TGFβ1; megakaryocytes have enriched expression of PF4, JAG2 and TGFβ1. Intriguingly, our previous studies showed that megakaryocytes could promote HSC expansion under stress conditions in the bone marrow. To investigate the potential role of N-cadherin-expressing cells in supporting fetal liver HSCs, we generated an N-cad CreER;Cxcl12 and an N-cad CreER;Scf mouse model to conditionally knockout the well-studied niche factors, CXCL12 and SCF, in N-cadherin-expressing cells. Conditional knockout of either Cxcl12 or Scf in N-cadherin-expressing cells resulted in an increase in the number of HSCs. Moreover, conditional knockout of Cxcxl12 in N-cadherin-expressing cells also resulted in a myeloid-biased differentiation. We postulate that the knockout of Cxcl12 or Scf in N-cadherin-expressing cells leads to the migration of HSCs towards other potential niche cells, such as macrophages and megakaryocytes, which may induce HSC expansion and biased differentiation. In summary, by using cutting-edge spatial transcriptomics, we revealed a comprehensive spatial transcriptomics of HSCs and niche cells in E14.5 mouse fetal liver. The N-cadherin-expressing cells in the fetal liver is a major niche in maintaining HSCs, while other potential niches may be responsible for the expansion of HSCs. In the future, we will use multiple approaches, such as spatial transcriptomics and fluorescence in situ hybridization (FISH), to verify the distribution changes of HSCs in N-cad CreER;Cxcl12 mouse, and to reveal the niches in support of the expansion of HSCs. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助mumu采纳,获得30
刚刚
华仔应助专注的枫叶采纳,获得10
刚刚
纯真的元风完成签到,获得积分10
刚刚
刚刚
情怀应助zhuzhu采纳,获得10
刚刚
刚刚
微风往事发布了新的文献求助10
刚刚
刚刚
1秒前
开心的半仙完成签到,获得积分10
1秒前
大模型应助Yangfan采纳,获得10
1秒前
ding应助Gracywss采纳,获得20
1秒前
lh发布了新的文献求助10
1秒前
陶醉的代玉完成签到 ,获得积分10
2秒前
2秒前
LYJ完成签到,获得积分10
3秒前
ml完成签到 ,获得积分10
3秒前
罗是一完成签到,获得积分10
3秒前
爱吃泡芙完成签到,获得积分10
3秒前
3秒前
mirror完成签到,获得积分10
3秒前
zhs完成签到,获得积分10
4秒前
4秒前
4秒前
啦啦啦完成签到,获得积分10
5秒前
momo应助michael采纳,获得10
5秒前
5秒前
高高诗柳完成签到 ,获得积分10
5秒前
5秒前
Roger完成签到,获得积分10
5秒前
稳重蜗牛完成签到,获得积分10
5秒前
金岁岁完成签到 ,获得积分10
5秒前
大团长发布了新的文献求助10
6秒前
6秒前
6秒前
Echo发布了新的文献求助10
6秒前
谦让寄容完成签到,获得积分10
6秒前
6秒前
fan完成签到,获得积分10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006