医学
人工智能
放射科
曲线下面积
机器学习
超声波
人工神经网络
甲状腺癌
多普勒超声
彩色多普勒
甲状腺
超声科
计算机科学
内科学
药代动力学
作者
Yicheng Zhu,Hongbo Du,Quan Jiang,Tao Zhang,Xiaojuan Huang,Yuan Zhang,Xiu‐Rong Shi,Jun Shan,Alaa AlZoubi
摘要
This pilot study aims at exploiting machine learning techniques to extract color Doppler ultrasound (CDUS) features and to build an artificial neural network (ANN) model based on these CDUS features for improving the diagnostic performance of thyroid cancer classification.A total of 674 patients with 712 thyroid nodules (TNs) (512 from internal dataset and 200 from external dataset) were randomly selected in this retrospective study. We used ANN to build a model (TDUS-Net) for classifying malignant and benign TNs using both the automatically extracted quantitative CDUS features (whole ratio, intranodular ratio, peripheral ratio, and number of vessels) and gray-scale ultrasound (US) features defined by the American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS). Then, we compared the diagnostic performance of the model, the performance of another ANN model based on the gray-scale US features alone (TUS-Net), and that of radiologists.The TDUS-Net (0.898, 95% CI: 0.868-0.922) achieved a higher area under the curve (AUC) than that of TUS-Net (0.881, 95% CI: 0.850-0.908) in the internal tests. Compared with radiologists, TDUS-Net (AUC: 0.925, 95% CI: 0.880-0.958) performed better than radiologists (AUC: 0.810, 95% CI: 0.749-0.862) in the external tests.Applying a machine learning model by combining both gray-scale US features and CDUS features can achieve comparable or even higher performance than radiologists in classifying TNs.
科研通智能强力驱动
Strongly Powered by AbleSci AI