Using deep learning for quantification of cellularity and cell lineages in bone marrow biopsies and comparison to normal age-related variation

组内相关 骨髓 医学 病理 分割 活检 人工智能 计算机科学 临床心理学 心理测量学
作者
Leander van Eekelen,Hans Pinckaers,Michiel van den Brand,Konnie M. Hebeda,Geert Litjens
出处
期刊:Pathology [Elsevier BV]
卷期号:54 (3): 318-327 被引量:14
标识
DOI:10.1016/j.pathol.2021.07.011
摘要

Cellularity estimation forms an important aspect of the visual examination of bone marrow biopsies. In clinical practice, cellularity is estimated by eye under a microscope, which is rapid, but subjective and subject to inter- and intraobserver variability. In addition, there is little consensus in the literature on the normal variation of cellularity with age. Digital image analysis may be used for more objective quantification of cellularity. As such, we developed a deep neural network for the segmentation of six major cell and tissue types in digitized bone marrow trephine biopsies. Using this segmentation, we calculated the overall bone marrow cellularity in a series of biopsies from 130 patients across a wide age range. Using intraclass correlation coefficients (ICC), we measured the agreement between the quantification by the neural network and visual estimation by two pathologists and compared it to baseline human performance. We also examined the age-related changes of cellularity and cell lineages in bone marrow and compared our results to those found in the literature. The network was capable of accurate segmentation (average accuracy and dice score of 0.95 and 0.76, respectively). There was good neural network-pathologist agreement on cellularity measurements (ICC=0.78, 95% CI 0.58-0.85). We found a statistically significant downward trend for cellularity, myelopoiesis and megakaryocytes with age in our cohort. The mean cellularity began at approximately 50% in the third decade of life and then decreased ±2% per decade to 40% in the seventh and eighth decade, but the normal range was very wide (30-70%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助格子采纳,获得10
1秒前
研友_nqaogn发布了新的文献求助10
2秒前
qq发布了新的文献求助10
2秒前
黄bb应助机智的小土豆采纳,获得10
3秒前
4秒前
liuxg_2000完成签到,获得积分10
6秒前
酷酷含桃发布了新的文献求助10
6秒前
7秒前
hdy331完成签到,获得积分10
9秒前
9秒前
科研通AI5应助恬恬采纳,获得10
10秒前
10秒前
lyy完成签到 ,获得积分10
10秒前
欣然发布了新的文献求助10
10秒前
13秒前
SYLH应助冷静惜珊采纳,获得10
13秒前
淡然冬灵发布了新的文献求助10
14秒前
华仔应助兴奋仙人掌采纳,获得10
14秒前
14秒前
星期日不上发条完成签到,获得积分10
17秒前
大模型应助Radiant采纳,获得10
17秒前
20秒前
22秒前
黄bb应助机智的小土豆采纳,获得10
24秒前
25秒前
若狂发布了新的文献求助20
26秒前
26秒前
研友_nqaogn发布了新的文献求助10
28秒前
今后应助雨夜星空采纳,获得10
28秒前
凉皮儿发布了新的文献求助10
28秒前
29秒前
Lucas应助zou采纳,获得10
29秒前
bkagyin应助小写采纳,获得30
31秒前
飘逸千万发布了新的文献求助10
31秒前
33秒前
Owen应助WbinWu采纳,获得10
33秒前
咖啡茶叶豆完成签到,获得积分10
34秒前
Lohym完成签到,获得积分10
34秒前
所所应助caizhizhao采纳,获得10
35秒前
ningwu给ningwu的求助进行了留言
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756472
求助须知:如何正确求助?哪些是违规求助? 3299848
关于积分的说明 10111676
捐赠科研通 3014416
什么是DOI,文献DOI怎么找? 1655523
邀请新用户注册赠送积分活动 789986
科研通“疑难数据库(出版商)”最低求助积分说明 753523