Deep-learning framework based on a large ultrasound image database to realize computer-aided diagnosis for liver and breast tumors

纤维腺瘤 超声波 医学 乳腺超声检查 乳腺癌 卷积神经网络 乳腺肿瘤 肝肿瘤 放射科 人工智能 肝癌 乳腺摄影术 计算机科学 癌症 内科学 肝细胞癌
作者
Makoto Yamakawa,Tsuyoshi Shiina,Koichiro Tsugawa,Naoshi Nishida,Masatoshi Kudo
标识
DOI:10.1109/ius52206.2021.9593518
摘要

The quality and quantity of training data is vital for computer-aided diagnosis (CADx) based on deep learning. However, the biomedical industry lacks large database of ultrasound images. Therefore, The Japan Society of Ultrasonics in Medicine (JSUM) is currently constructing an ultrasound image database for liver tumors, breast tumors, and heart diseases. As of August 2021, the project has collected more than 140,000 ultrasound images and videos. This database contains ultrasound images, their corresponding labels, and annotation information. That is, the ultrasound image data contains information related to the size and location of the tumor. In this study, we developed a CADx to classify liver tumors and breast tumors by utilizing approximately 71,000 liver tumor and 14,000 breast tumor ultrasound images from the abovementioned database. We classified liver tumors into four classes: cysts, hemangiomas, hepatocellular carcinomas, and metastatic liver cancers. Similarly, we classified breast tumors into four classes: breast cancer, fibroadenoma, cysts, and others. We used a convolutional neural network based on VGG19 for these classifications, and evaluated the accuracy of each case unit by k-fold cross-validation, thereby achieving an accuracy of 91.1% and 85.2% for four-class classification of liver tumor and breast tumor, respectively. In addition, the accuracy, sensitivity, and specificity of the benign/malignant classification based on this result was, respectively, 94.3%, 82.8%, and 96.7% for liver tumors and 89.9%, 92.6%, and 86.6% for breast tumors. Furthermore, when compared with the results obtained in a previous study that utilized a small database, using a large database provided a higher accuracy for both liver and breast tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
欢乐谷完成签到,获得积分10
3秒前
欢乐谷发布了新的文献求助10
5秒前
斯文的道罡完成签到,获得积分10
8秒前
8秒前
9秒前
田様应助lyn采纳,获得10
10秒前
orixero应助Jiahui采纳,获得10
11秒前
研友_VZG7GZ应助zk200107采纳,获得10
11秒前
11秒前
kakafan发布了新的文献求助10
11秒前
12秒前
勤劳莹芝发布了新的文献求助10
12秒前
欣喜聪健发布了新的文献求助10
15秒前
飘逸怜菡完成签到 ,获得积分10
16秒前
yexing完成签到,获得积分10
16秒前
zqx发布了新的文献求助10
16秒前
17秒前
欣喜聪健完成签到,获得积分10
21秒前
Jasper应助进击的书包采纳,获得10
22秒前
ZJFL完成签到,获得积分10
24秒前
車侖完成签到 ,获得积分10
24秒前
于海洋完成签到,获得积分10
25秒前
打打应助要减肥的chao采纳,获得10
25秒前
研友_VZG7GZ应助shencan采纳,获得10
28秒前
28秒前
28秒前
xyawl425完成签到,获得积分10
28秒前
28秒前
大个应助陈昊采纳,获得10
29秒前
张雷应助牛牛眉目采纳,获得10
30秒前
hh发布了新的文献求助30
30秒前
30秒前
于海洋发布了新的文献求助10
32秒前
阡陌发布了新的文献求助10
32秒前
领导范儿应助勤劳莹芝采纳,获得30
33秒前
35秒前
wo完成签到 ,获得积分10
36秒前
36秒前
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966344
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159558
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804361