已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep-learning framework based on a large ultrasound image database to realize computer-aided diagnosis for liver and breast tumors

纤维腺瘤 超声波 医学 乳腺超声检查 乳腺癌 卷积神经网络 乳腺肿瘤 肝肿瘤 放射科 人工智能 肝癌 乳腺摄影术 计算机科学 癌症 内科学 肝细胞癌
作者
Makoto Yamakawa,Tsuyoshi Shiina,Koichiro Tsugawa,Naoshi Nishida,Masatoshi Kudo
标识
DOI:10.1109/ius52206.2021.9593518
摘要

The quality and quantity of training data is vital for computer-aided diagnosis (CADx) based on deep learning. However, the biomedical industry lacks large database of ultrasound images. Therefore, The Japan Society of Ultrasonics in Medicine (JSUM) is currently constructing an ultrasound image database for liver tumors, breast tumors, and heart diseases. As of August 2021, the project has collected more than 140,000 ultrasound images and videos. This database contains ultrasound images, their corresponding labels, and annotation information. That is, the ultrasound image data contains information related to the size and location of the tumor. In this study, we developed a CADx to classify liver tumors and breast tumors by utilizing approximately 71,000 liver tumor and 14,000 breast tumor ultrasound images from the abovementioned database. We classified liver tumors into four classes: cysts, hemangiomas, hepatocellular carcinomas, and metastatic liver cancers. Similarly, we classified breast tumors into four classes: breast cancer, fibroadenoma, cysts, and others. We used a convolutional neural network based on VGG19 for these classifications, and evaluated the accuracy of each case unit by k-fold cross-validation, thereby achieving an accuracy of 91.1% and 85.2% for four-class classification of liver tumor and breast tumor, respectively. In addition, the accuracy, sensitivity, and specificity of the benign/malignant classification based on this result was, respectively, 94.3%, 82.8%, and 96.7% for liver tumors and 89.9%, 92.6%, and 86.6% for breast tumors. Furthermore, when compared with the results obtained in a previous study that utilized a small database, using a large database provided a higher accuracy for both liver and breast tumors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
world完成签到,获得积分10
1秒前
Akim应助ttt采纳,获得10
4秒前
甜甜完成签到 ,获得积分10
5秒前
钦点小黑发布了新的文献求助10
5秒前
YipHosum完成签到,获得积分10
5秒前
dean完成签到,获得积分10
5秒前
FashionBoy应助小铭的男仆采纳,获得10
7秒前
7秒前
9秒前
然大宝发布了新的文献求助10
10秒前
11秒前
11秒前
TZMY完成签到,获得积分10
12秒前
CYL发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
Akim应助科研通管家采纳,获得30
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
天天快乐应助科研通管家采纳,获得10
14秒前
14秒前
大个应助科研通管家采纳,获得10
14秒前
阿布应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
美好斓应助科研通管家采纳,获得100
14秒前
烟花应助科研通管家采纳,获得10
14秒前
mm应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
喜悦凡霜发布了新的文献求助10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
阿布应助科研通管家采纳,获得10
15秒前
ttt发布了新的文献求助10
15秒前
Kin发布了新的文献求助10
18秒前
shark发布了新的文献求助10
18秒前
22秒前
刻苦迎波关注了科研通微信公众号
23秒前
康康小白杨完成签到 ,获得积分10
23秒前
Niki发布了新的文献求助10
24秒前
顾良完成签到 ,获得积分10
25秒前
钦点小黑完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634034
求助须知:如何正确求助?哪些是违规求助? 4730010
关于积分的说明 14987480
捐赠科研通 4791817
什么是DOI,文献DOI怎么找? 2559061
邀请新用户注册赠送积分活动 1519555
关于科研通互助平台的介绍 1479734