Deep-learning framework based on a large ultrasound image database to realize computer-aided diagnosis for liver and breast tumors

纤维腺瘤 超声波 医学 乳腺超声检查 乳腺癌 卷积神经网络 乳腺肿瘤 肝肿瘤 放射科 人工智能 肝癌 乳腺摄影术 计算机科学 癌症 内科学 肝细胞癌
作者
Makoto Yamakawa,Tsuyoshi Shiina,Koichiro Tsugawa,Naoshi Nishida,Masatoshi Kudo
标识
DOI:10.1109/ius52206.2021.9593518
摘要

The quality and quantity of training data is vital for computer-aided diagnosis (CADx) based on deep learning. However, the biomedical industry lacks large database of ultrasound images. Therefore, The Japan Society of Ultrasonics in Medicine (JSUM) is currently constructing an ultrasound image database for liver tumors, breast tumors, and heart diseases. As of August 2021, the project has collected more than 140,000 ultrasound images and videos. This database contains ultrasound images, their corresponding labels, and annotation information. That is, the ultrasound image data contains information related to the size and location of the tumor. In this study, we developed a CADx to classify liver tumors and breast tumors by utilizing approximately 71,000 liver tumor and 14,000 breast tumor ultrasound images from the abovementioned database. We classified liver tumors into four classes: cysts, hemangiomas, hepatocellular carcinomas, and metastatic liver cancers. Similarly, we classified breast tumors into four classes: breast cancer, fibroadenoma, cysts, and others. We used a convolutional neural network based on VGG19 for these classifications, and evaluated the accuracy of each case unit by k-fold cross-validation, thereby achieving an accuracy of 91.1% and 85.2% for four-class classification of liver tumor and breast tumor, respectively. In addition, the accuracy, sensitivity, and specificity of the benign/malignant classification based on this result was, respectively, 94.3%, 82.8%, and 96.7% for liver tumors and 89.9%, 92.6%, and 86.6% for breast tumors. Furthermore, when compared with the results obtained in a previous study that utilized a small database, using a large database provided a higher accuracy for both liver and breast tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zeke发布了新的文献求助10
刚刚
不爱吃糖发布了新的文献求助10
1秒前
852应助冷傲迎梦采纳,获得10
2秒前
陶醉觅夏发布了新的文献求助200
3秒前
3秒前
exile完成签到,获得积分10
4秒前
朱一龙发布了新的文献求助10
4秒前
mawenting完成签到 ,获得积分10
6秒前
zeke完成签到,获得积分10
7秒前
科研通AI5应助solobang采纳,获得10
8秒前
8秒前
小宇OvO发布了新的文献求助10
9秒前
9秒前
忘羡222完成签到,获得积分10
9秒前
专一发布了新的文献求助10
11秒前
跳跃曼文完成签到,获得积分10
12秒前
干将莫邪完成签到,获得积分10
13秒前
SYLH应助exile采纳,获得10
13秒前
小二郎应助魔幻的从梦采纳,获得10
14秒前
15秒前
雪鸽鸽发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
18秒前
科研通AI5应助朱一龙采纳,获得30
19秒前
SharonDu完成签到 ,获得积分10
20秒前
ayin完成签到,获得积分10
20秒前
21秒前
21秒前
啦啦啦完成签到,获得积分10
21秒前
coffee发布了新的文献求助10
22秒前
22秒前
科研混子发布了新的文献求助10
22秒前
咿咿呀呀发布了新的文献求助10
22秒前
酷酷碧发布了新的文献求助10
24秒前
飘逸宛丝完成签到,获得积分10
25秒前
qzaima发布了新的文献求助10
25秒前
米酒完成签到,获得积分10
27秒前
step_stone给step_stone的求助进行了留言
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824