Deep-learning framework based on a large ultrasound image database to realize computer-aided diagnosis for liver and breast tumors

纤维腺瘤 超声波 医学 乳腺超声检查 乳腺癌 卷积神经网络 乳腺肿瘤 肝肿瘤 放射科 人工智能 肝癌 乳腺摄影术 计算机科学 癌症 内科学 肝细胞癌
作者
Makoto Yamakawa,Tsuyoshi Shiina,Koichiro Tsugawa,Naoshi Nishida,Masatoshi Kudo
标识
DOI:10.1109/ius52206.2021.9593518
摘要

The quality and quantity of training data is vital for computer-aided diagnosis (CADx) based on deep learning. However, the biomedical industry lacks large database of ultrasound images. Therefore, The Japan Society of Ultrasonics in Medicine (JSUM) is currently constructing an ultrasound image database for liver tumors, breast tumors, and heart diseases. As of August 2021, the project has collected more than 140,000 ultrasound images and videos. This database contains ultrasound images, their corresponding labels, and annotation information. That is, the ultrasound image data contains information related to the size and location of the tumor. In this study, we developed a CADx to classify liver tumors and breast tumors by utilizing approximately 71,000 liver tumor and 14,000 breast tumor ultrasound images from the abovementioned database. We classified liver tumors into four classes: cysts, hemangiomas, hepatocellular carcinomas, and metastatic liver cancers. Similarly, we classified breast tumors into four classes: breast cancer, fibroadenoma, cysts, and others. We used a convolutional neural network based on VGG19 for these classifications, and evaluated the accuracy of each case unit by k-fold cross-validation, thereby achieving an accuracy of 91.1% and 85.2% for four-class classification of liver tumor and breast tumor, respectively. In addition, the accuracy, sensitivity, and specificity of the benign/malignant classification based on this result was, respectively, 94.3%, 82.8%, and 96.7% for liver tumors and 89.9%, 92.6%, and 86.6% for breast tumors. Furthermore, when compared with the results obtained in a previous study that utilized a small database, using a large database provided a higher accuracy for both liver and breast tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LJQ完成签到,获得积分10
刚刚
科研的神发布了新的文献求助10
刚刚
刚刚
CipherSage应助hpj采纳,获得10
刚刚
L111完成签到,获得积分20
1秒前
1秒前
沉静怀绿关注了科研通微信公众号
1秒前
windmelody完成签到,获得积分10
2秒前
2秒前
王玥1266发布了新的文献求助10
3秒前
Meddy发布了新的文献求助20
3秒前
科研通AI2S应助颜凡桃采纳,获得10
3秒前
深情安青应助Grace采纳,获得10
4秒前
gyh发布了新的文献求助10
4秒前
hijuddy完成签到,获得积分20
4秒前
Qi半仙完成签到,获得积分10
4秒前
meltconstraint完成签到,获得积分10
5秒前
赵凯完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
欢喜昊焱发布了新的文献求助10
5秒前
xx发布了新的文献求助10
6秒前
Nann完成签到 ,获得积分10
7秒前
8秒前
烟花应助随想采纳,获得10
9秒前
liyuxuan完成签到,获得积分10
9秒前
十一点二十八分完成签到 ,获得积分10
9秒前
香蕉觅云应助hijuddy采纳,获得30
10秒前
无限白羊发布了新的文献求助10
10秒前
10秒前
11秒前
笨笨易绿发布了新的文献求助10
11秒前
11秒前
Navial30发布了新的文献求助10
11秒前
唐咩咩咩完成签到,获得积分10
12秒前
快乐疯样完成签到,获得积分10
13秒前
bru发布了新的文献求助10
13秒前
13秒前
13秒前
LJQ发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480228
求助须知:如何正确求助?哪些是违规求助? 4581437
关于积分的说明 14380635
捐赠科研通 4510045
什么是DOI,文献DOI怎么找? 2471647
邀请新用户注册赠送积分活动 1458035
关于科研通互助平台的介绍 1431786