斑马鱼
转基因
生物
膜联蛋白
细胞生物学
转基因小鼠
绿色荧光蛋白
模式生物
分子生物学
基因
遗传学
流式细胞术
作者
Surendra Kumar Rajpurohit,Aaron Gopal,May Ye Mon,Nikhil Patel,Vishal Arora
标识
DOI:10.1161/res.129.suppl_1.p303
摘要
The Zebrafish provided an excellent platform to study the genetic and molecular approach ofcardiac research. Zebrafish heart cells similar to human heart cells at the molecular level anddetermine gene functions that control cardiac function and dysfunction. In zebrafish heart, myl7is myosin 7 gene and identified as a regulatory gene orthologs to human MYL7. In the heart,Annexin5 activities contribute to cardiomyocyte dedifferentiation, proliferation and epicardial injuryresponses which leads to cardiac cell death by apoptosis and narcosis pathways. We aredeveloping annexin-5 activity in the cardiovascular function under normal and in metabolicaberration by generating homozygous Casper/ myl7:RFP; annexin-5:YFP transgenic zebrafish.By developing Casper/myl7/Annexin-5 transparent transgenic zebrafish model, we establish time-lapse in-vivo confocal microscopy to study of cellular phenotype/pathologies of thecardiomyocytes over time in newly developed strain to quantify changes in cardiomyocytemorphology and function overtime, comparing control and cardiac injury and cardio-oncologymodels. Transgenic zebrafish has normal type skin pigmentation background. In zebrafish,tracking of transgenic reporter activity in in-vivo is only possible in transparent stage. To maintaintransparency throughout the life, these strains crossbred with the skin transparent mutant Casper.Casper contributes to the study by integrating a transparent characteristic in adult zebrafish thatallows for simpler transparent visualization and observation. We develop casper transgenicprogenies through cross breeding with the transgenic strain of myl7:RFP;annexin-5:YFP .Confocal and fluorescent microscopy used to get accurate, precise imaging and to determinefluorescent protein being activated. 1.1: Generation of homozygous casper / myl7:RFP;annexin-5:YFP zebrafish (Generation F01-F05). 1.2: Screening and sorting the transgenic progeny andIn vivo imaging to validate cardiac morphology through in-vivo confocal imaging. Generation ofhomozygous casper / myl7:RFP;annexin-5:YFP zebrafish: Casper-Annexin5 homozygous stain:Cross breed casper and myl7/Annexin5 fish; F01: Generate the eggs from breeder and grow theembryo to attenuate larvae to screen for transgenic expression. F01 generation, larvae showtransgenic expression (47%). F02: transgenic expression larvae (39%). F02 heterozygous shownormal skin pattern; F03, larval show transgenic expression (43%). F04, transgenic larvae(90%).F04; 100% fishes are phenotypically casper; F05: heterozygous transgenic progeny togrow and continue to generate until achieve 100% homozygous casper-myl7-Annexin5 strain.These novel results provide in-vivo whole organism-based platform to design high throughputscreening and establish new horizon for drug discovery in the Cardiac Disease and Cardio-oncology.
科研通智能强力驱动
Strongly Powered by AbleSci AI