MIGO-NAS: Towards Fast and Generalizable Neural Architecture Search

计算机科学 水准点(测量) 人工神经网络 概化理论 人工智能 目标检测 管道(软件) 机器学习 分割 计算机工程 大地测量学 数学 统计 程序设计语言 地理
作者
Xiawu Zheng,Rongrong Ji,Yuhang Chen,Qiang Wang,Baochang Zhang,Jie Chen,Qixiang Ye,Feiyue Huang,Yonghong Tian
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 2936-2952 被引量:36
标识
DOI:10.1109/tpami.2021.3065138
摘要

Neural architecture search (NAS) has achieved unprecedented performance in various computer vision tasks. However, most existing NAS methods are defected in search efficiency and model generalizability. In this paper, we propose a novel NAS framework, termed MIGO-NAS, with the aim to guarantee the efficiency and generalizability in arbitrary search spaces. On the one hand, we formulate the search space as a multivariate probabilistic distribution, which is then optimized by a novel multivariate information-geometric optimization (MIGO). By approximating the distribution with a sampling, training, and testing pipeline, MIGO guarantees the memory efficiency, training efficiency, and search flexibility. Besides, MIGO is the first time to decrease the estimation error of natural gradient in multivariate distribution. On the other hand, for a set of specific constraints, the neural architectures are generated by a novel dynamic programming network generation (DPNG), which significantly reduces the training cost under various hardware environments. Experiments validate the advantages of our approach over existing methods by establishing a superior accuracy and efficiency i.e., 2.39 test error on CIFAR-10 benchmark and 21.7 on ImageNet benchmark, with only 1.5 GPU hours and 96 GPU hours for searching, respectively. Besides, the searched architectures can be well generalize to computer vision tasks including object detection and semantic segmentation, i.e., 25×25× FLOPs compression, with 6.4 mAP gain over Pascal VOC dataset, and 29.9×29.9× FLOPs compression, with only 1.41 percent performance drop over Cityscapes dataset. The code is publicly available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
可爱的函函应助黄紫红蓝采纳,获得10
1秒前
纪汶欣发布了新的文献求助20
1秒前
pluto应助幽默尔蓝采纳,获得10
1秒前
专注的问寒应助ss采纳,获得20
2秒前
Nicole发布了新的文献求助10
3秒前
3秒前
3秒前
传奇3应助调皮的炳采纳,获得10
3秒前
依依完成签到 ,获得积分20
3秒前
科目三应助灰色头像采纳,获得10
3秒前
王麒发布了新的文献求助10
4秒前
4秒前
飞奔的五花肉完成签到,获得积分10
4秒前
usokb完成签到,获得积分10
4秒前
紫菱星君完成签到,获得积分10
5秒前
秦梓涵的妈妈完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
大个应助青山采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
CXR完成签到,获得积分10
8秒前
科目三应助甜叶菊采纳,获得10
8秒前
和科比发布了新的文献求助10
8秒前
小柒完成签到,获得积分20
9秒前
科研通AI6应助徐仁森采纳,获得10
9秒前
D&L发布了新的文献求助10
10秒前
TheDay发布了新的文献求助10
10秒前
10秒前
10秒前
慕青应助憨憨采纳,获得10
10秒前
CNJX完成签到,获得积分10
10秒前
王梓磬发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648073
求助须知:如何正确求助?哪些是违规求助? 4774828
关于积分的说明 15042676
捐赠科研通 4807153
什么是DOI,文献DOI怎么找? 2570560
邀请新用户注册赠送积分活动 1527333
关于科研通互助平台的介绍 1486398