MIGO-NAS: Towards Fast and Generalizable Neural Architecture Search

计算机科学 水准点(测量) 人工神经网络 概化理论 人工智能 目标检测 管道(软件) 机器学习 分割 计算机工程 大地测量学 数学 统计 程序设计语言 地理
作者
Xiawu Zheng,Rongrong Ji,Yuhang Chen,Qiang Wang,Baochang Zhang,Jie Chen,Qixiang Ye,Feiyue Huang,Yonghong Tian
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 2936-2952 被引量:36
标识
DOI:10.1109/tpami.2021.3065138
摘要

Neural architecture search (NAS) has achieved unprecedented performance in various computer vision tasks. However, most existing NAS methods are defected in search efficiency and model generalizability. In this paper, we propose a novel NAS framework, termed MIGO-NAS, with the aim to guarantee the efficiency and generalizability in arbitrary search spaces. On the one hand, we formulate the search space as a multivariate probabilistic distribution, which is then optimized by a novel multivariate information-geometric optimization (MIGO). By approximating the distribution with a sampling, training, and testing pipeline, MIGO guarantees the memory efficiency, training efficiency, and search flexibility. Besides, MIGO is the first time to decrease the estimation error of natural gradient in multivariate distribution. On the other hand, for a set of specific constraints, the neural architectures are generated by a novel dynamic programming network generation (DPNG), which significantly reduces the training cost under various hardware environments. Experiments validate the advantages of our approach over existing methods by establishing a superior accuracy and efficiency i.e., 2.39 test error on CIFAR-10 benchmark and 21.7 on ImageNet benchmark, with only 1.5 GPU hours and 96 GPU hours for searching, respectively. Besides, the searched architectures can be well generalize to computer vision tasks including object detection and semantic segmentation, i.e., 25×25× FLOPs compression, with 6.4 mAP gain over Pascal VOC dataset, and 29.9×29.9× FLOPs compression, with only 1.41 percent performance drop over Cityscapes dataset. The code is publicly available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
wanci发布了新的文献求助10
1秒前
ys6完成签到,获得积分10
1秒前
1秒前
mgg完成签到,获得积分10
1秒前
传奇3应助zgdzhj采纳,获得10
2秒前
所所应助宸昶采纳,获得10
2秒前
2秒前
李健应助YUU采纳,获得10
2秒前
柯夫子完成签到,获得积分10
2秒前
午餐肉完成签到,获得积分10
3秒前
3秒前
轨迹应助优秀采纳,获得20
3秒前
4秒前
fordream发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助绿色的泥巴采纳,获得10
4秒前
拼搏的潘子完成签到,获得积分10
5秒前
5秒前
宋宋发布了新的文献求助10
5秒前
5秒前
万能图书馆应助威武雅容采纳,获得10
5秒前
沉默问夏完成签到 ,获得积分10
6秒前
6秒前
6秒前
核桃应助sharkmelon采纳,获得10
7秒前
凤飞完成签到,获得积分10
7秒前
8秒前
小明发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
无花果应助rui采纳,获得10
9秒前
你好发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
Lllll发布了新的文献求助10
10秒前
斗转星移发布了新的文献求助10
11秒前
小二郎应助第七个星球采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660641
求助须知:如何正确求助?哪些是违规求助? 4835016
关于积分的说明 15091506
捐赠科研通 4819242
什么是DOI,文献DOI怎么找? 2579181
邀请新用户注册赠送积分活动 1533670
关于科研通互助平台的介绍 1492441