已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MIGO-NAS: Towards Fast and Generalizable Neural Architecture Search

计算机科学 水准点(测量) 人工神经网络 概化理论 人工智能 目标检测 管道(软件) 机器学习 分割 计算机工程 大地测量学 数学 统计 程序设计语言 地理
作者
Xiawu Zheng,Rongrong Ji,Yuhang Chen,Qiang Wang,Baochang Zhang,Jie Chen,Qixiang Ye,Feiyue Huang,Yonghong Tian
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 2936-2952 被引量:36
标识
DOI:10.1109/tpami.2021.3065138
摘要

Neural architecture search (NAS) has achieved unprecedented performance in various computer vision tasks. However, most existing NAS methods are defected in search efficiency and model generalizability. In this paper, we propose a novel NAS framework, termed MIGO-NAS, with the aim to guarantee the efficiency and generalizability in arbitrary search spaces. On the one hand, we formulate the search space as a multivariate probabilistic distribution, which is then optimized by a novel multivariate information-geometric optimization (MIGO). By approximating the distribution with a sampling, training, and testing pipeline, MIGO guarantees the memory efficiency, training efficiency, and search flexibility. Besides, MIGO is the first time to decrease the estimation error of natural gradient in multivariate distribution. On the other hand, for a set of specific constraints, the neural architectures are generated by a novel dynamic programming network generation (DPNG), which significantly reduces the training cost under various hardware environments. Experiments validate the advantages of our approach over existing methods by establishing a superior accuracy and efficiency i.e., 2.39 test error on CIFAR-10 benchmark and 21.7 on ImageNet benchmark, with only 1.5 GPU hours and 96 GPU hours for searching, respectively. Besides, the searched architectures can be well generalize to computer vision tasks including object detection and semantic segmentation, i.e., 25×25× FLOPs compression, with 6.4 mAP gain over Pascal VOC dataset, and 29.9×29.9× FLOPs compression, with only 1.41 percent performance drop over Cityscapes dataset. The code is publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
3秒前
追寻沛萍完成签到,获得积分20
3秒前
3秒前
阿良关注了科研通微信公众号
4秒前
汉堡包应助琳琳采纳,获得50
4秒前
shi hui应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
guaner发布了新的文献求助10
4秒前
科研通AI2S应助科研通管家采纳,获得50
4秒前
完美世界应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
shi hui应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
shi hui应助科研通管家采纳,获得10
6秒前
6秒前
archieeee完成签到,获得积分10
8秒前
xxxllllll发布了新的文献求助10
8秒前
菓小柒完成签到 ,获得积分10
8秒前
林生完成签到 ,获得积分10
8秒前
Newky发布了新的文献求助10
10秒前
困敦发布了新的文献求助10
10秒前
乐乐应助guaner采纳,获得10
11秒前
12秒前
牛肉面完成签到 ,获得积分10
13秒前
14秒前
15秒前
15秒前
16秒前
17秒前
yang完成签到,获得积分10
18秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384713
求助须知:如何正确求助?哪些是违规求助? 4507566
关于积分的说明 14028354
捐赠科研通 4417204
什么是DOI,文献DOI怎么找? 2426357
邀请新用户注册赠送积分活动 1419123
关于科研通互助平台的介绍 1397426