MIGO-NAS: Towards Fast and Generalizable Neural Architecture Search

计算机科学 水准点(测量) 人工神经网络 概化理论 人工智能 目标检测 管道(软件) 机器学习 分割 计算机工程 统计 数学 大地测量学 程序设计语言 地理
作者
Xiawu Zheng,Rongrong Ji,Yuhang Chen,Qiang Wang,Baochang Zhang,Jie Chen,Qixiang Ye,Feiyue Huang,Yonghong Tian
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:43 (9): 2936-2952 被引量:36
标识
DOI:10.1109/tpami.2021.3065138
摘要

Neural architecture search (NAS) has achieved unprecedented performance in various computer vision tasks. However, most existing NAS methods are defected in search efficiency and model generalizability. In this paper, we propose a novel NAS framework, termed MIGO-NAS, with the aim to guarantee the efficiency and generalizability in arbitrary search spaces. On the one hand, we formulate the search space as a multivariate probabilistic distribution, which is then optimized by a novel multivariate information-geometric optimization (MIGO). By approximating the distribution with a sampling, training, and testing pipeline, MIGO guarantees the memory efficiency, training efficiency, and search flexibility. Besides, MIGO is the first time to decrease the estimation error of natural gradient in multivariate distribution. On the other hand, for a set of specific constraints, the neural architectures are generated by a novel dynamic programming network generation (DPNG), which significantly reduces the training cost under various hardware environments. Experiments validate the advantages of our approach over existing methods by establishing a superior accuracy and efficiency i.e., 2.39 test error on CIFAR-10 benchmark and 21.7 on ImageNet benchmark, with only 1.5 GPU hours and 96 GPU hours for searching, respectively. Besides, the searched architectures can be well generalize to computer vision tasks including object detection and semantic segmentation, i.e., 25×25× FLOPs compression, with 6.4 mAP gain over Pascal VOC dataset, and 29.9×29.9× FLOPs compression, with only 1.41 percent performance drop over Cityscapes dataset. The code is publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
庄彧完成签到 ,获得积分10
刚刚
Luo完成签到,获得积分10
刚刚
刚刚
行难路完成签到 ,获得积分10
刚刚
似雨若离完成签到,获得积分10
刚刚
赵焱峥发布了新的文献求助10
1秒前
ljj发布了新的文献求助10
1秒前
顺利毕业发布了新的文献求助10
2秒前
不想摆烂o完成签到,获得积分10
2秒前
好运6连发布了新的文献求助10
3秒前
3秒前
wanci应助aqqqqq采纳,获得10
4秒前
4秒前
WCY发布了新的文献求助10
4秒前
5秒前
满意的惜梦完成签到 ,获得积分10
5秒前
伏坎发布了新的文献求助30
5秒前
弓长张完成签到,获得积分10
5秒前
Mila发布了新的文献求助10
5秒前
黑龙体育生完成签到,获得积分10
6秒前
幸福的凤灵完成签到,获得积分10
7秒前
cos完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
小豆包发布了新的文献求助10
8秒前
1213发布了新的文献求助10
8秒前
无花果应助生气的鸡蛋采纳,获得10
9秒前
王三发布了新的文献求助10
9秒前
烂漫的豆芽完成签到,获得积分10
10秒前
桐桐应助赵焱峥采纳,获得10
10秒前
库里力完成签到,获得积分10
11秒前
小二郎应助llyu采纳,获得10
11秒前
taoliu完成签到,获得积分10
11秒前
CX330发布了新的文献求助10
11秒前
nature完成签到,获得积分10
12秒前
12秒前
Akim应助健忘的汲采纳,获得10
13秒前
打打应助悦耳黎昕采纳,获得10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4556467
求助须知:如何正确求助?哪些是违规求助? 3984487
关于积分的说明 12335864
捐赠科研通 3654483
什么是DOI,文献DOI怎么找? 2013148
邀请新用户注册赠送积分活动 1048117
科研通“疑难数据库(出版商)”最低求助积分说明 936549