重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

MIGO-NAS: Towards Fast and Generalizable Neural Architecture Search

计算机科学 水准点(测量) 人工神经网络 概化理论 人工智能 目标检测 管道(软件) 机器学习 分割 计算机工程 大地测量学 数学 统计 程序设计语言 地理
作者
Xiawu Zheng,Rongrong Ji,Yuhang Chen,Qiang Wang,Baochang Zhang,Jie Chen,Qixiang Ye,Feiyue Huang,Yonghong Tian
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 2936-2952 被引量:36
标识
DOI:10.1109/tpami.2021.3065138
摘要

Neural architecture search (NAS) has achieved unprecedented performance in various computer vision tasks. However, most existing NAS methods are defected in search efficiency and model generalizability. In this paper, we propose a novel NAS framework, termed MIGO-NAS, with the aim to guarantee the efficiency and generalizability in arbitrary search spaces. On the one hand, we formulate the search space as a multivariate probabilistic distribution, which is then optimized by a novel multivariate information-geometric optimization (MIGO). By approximating the distribution with a sampling, training, and testing pipeline, MIGO guarantees the memory efficiency, training efficiency, and search flexibility. Besides, MIGO is the first time to decrease the estimation error of natural gradient in multivariate distribution. On the other hand, for a set of specific constraints, the neural architectures are generated by a novel dynamic programming network generation (DPNG), which significantly reduces the training cost under various hardware environments. Experiments validate the advantages of our approach over existing methods by establishing a superior accuracy and efficiency i.e., 2.39 test error on CIFAR-10 benchmark and 21.7 on ImageNet benchmark, with only 1.5 GPU hours and 96 GPU hours for searching, respectively. Besides, the searched architectures can be well generalize to computer vision tasks including object detection and semantic segmentation, i.e., 25×25× FLOPs compression, with 6.4 mAP gain over Pascal VOC dataset, and 29.9×29.9× FLOPs compression, with only 1.41 percent performance drop over Cityscapes dataset. The code is publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李竞帆完成签到,获得积分20
刚刚
刚刚
阳光孤菱完成签到,获得积分10
1秒前
青年才俊发布了新的文献求助10
1秒前
1秒前
1秒前
宋天宇发布了新的文献求助10
1秒前
1秒前
maybe豪发布了新的文献求助10
2秒前
2秒前
小蘑菇应助Aimee采纳,获得10
2秒前
小陶子发布了新的文献求助10
3秒前
JohnYang完成签到,获得积分10
3秒前
3秒前
wuxiao发布了新的文献求助10
4秒前
4秒前
5秒前
墨子完成签到,获得积分10
5秒前
CYYDNDB发布了新的文献求助10
5秒前
阳光孤菱发布了新的文献求助10
6秒前
星辰大海应助7890733采纳,获得10
6秒前
6秒前
康学羽发布了新的文献求助10
6秒前
刘老板发布了新的文献求助10
6秒前
maybe豪完成签到,获得积分10
7秒前
慕青应助RJC采纳,获得10
7秒前
7秒前
8秒前
jiaqi完成签到,获得积分20
8秒前
小蘑菇应助研友_ZlxK6Z采纳,获得10
8秒前
8秒前
yyy发布了新的文献求助10
9秒前
充电宝应助啊TiP采纳,获得10
9秒前
lbwnb2112完成签到,获得积分10
10秒前
11秒前
xiaowang完成签到,获得积分10
11秒前
秀秀粉完成签到,获得积分10
11秒前
11秒前
大方小松发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567