Novel combination of high voltage nanopulses and in-soil generated plasma micro-discharges applied for the highly efficient degradation of trifluralin

氟乐灵 化学 降级(电信) 环境化学 等离子体 环境修复 污染物 杀虫剂 污染 电信 生物 农学 物理 有机化学 量子力学 计算机科学 生态学
作者
Maria Hatzisymeon,D. Tataraki,Gerasimos Rassias,C.A. Aggelopoulos
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:415: 125646-125646 被引量:32
标识
DOI:10.1016/j.jhazmat.2021.125646
摘要

Cold plasma is considered a highly competitive advanced oxidation process for the removal of organic pollutants from soil. Herein, we describe for the first time the combination of in-soil generated plasma micro-discharges with the advantageous high voltage nanosecond pulses (NSP) towards the high-efficient degradation of trifluralin in soil. We performed a detailed parametric analysis (pulse frequency, pulse voltage, soil thickness, soil type, energy efficiency) to determine the optimum operational conditions. High trifluralin degradation was achieved even at the higher soil thickness, indicating that the production of plasma discharges directly inside the soil pores enhanced the mass transfer of plasma reactive oxygen and nitrogen species (RONS) in soil. The energy efficiency achieved was outstanding, being up to 2–3 orders of magnitude higher than those reported for other plasma systems. We identified the intermediate degradants and proposed the most dominant degradation pathways whereas a thorough exhaust gases analysis, optical emission spectroscopy (OES) and active species inhibition by using trapping agents revealed the main RONS involved. This effort constitutes a significant advancement in the "green" credentials and application of plasma-induced degradation of pollutants as it describes for the first time the removal of the highly harmful and toxic pesticide trifluralin from soil and provides a novel perspective towards the future development of cold plasma-based soil remediation technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
hyl完成签到,获得积分10
2秒前
积极的初南完成签到,获得积分10
3秒前
Livrik发布了新的文献求助10
4秒前
小小完成签到 ,获得积分10
4秒前
笨笨山芙发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
7秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
Livrik完成签到,获得积分10
10秒前
小猴子关注了科研通微信公众号
10秒前
阿Q完成签到,获得积分10
11秒前
yujd完成签到,获得积分10
11秒前
鹿仪发布了新的文献求助10
11秒前
11秒前
11秒前
Orange应助好宝宝采纳,获得10
13秒前
13秒前
GL发布了新的文献求助10
14秒前
14秒前
李健应助年轻的烨华采纳,获得10
16秒前
Jasper应助zhugepengju采纳,获得10
16秒前
17秒前
酢浆草小熊完成签到 ,获得积分10
17秒前
沈昊泽完成签到,获得积分10
20秒前
陈浩发布了新的文献求助10
20秒前
21秒前
春眠不觉小小酥完成签到,获得积分10
22秒前
23秒前
24秒前
24秒前
wwb完成签到,获得积分10
24秒前
在水一方应助meimale采纳,获得10
25秒前
星晴遇见花海完成签到 ,获得积分10
26秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035