TTC39B destabilizes retinoblastoma protein promoting hepatic lipogenesis in a sex-specific fashion

脂肪生成 内分泌学 肝细胞 内科学 基因 细胞生物学 癌症研究 生物 视网膜母细胞瘤蛋白 医学 遗传学 细胞周期 体外
作者
Joanne Hsieh,Matthew M. Molusky,Kristin M. McCabe,Panagiotis Fotakis,Tong Xiao,Liana Tascau,Lars Zeana-Schliep,Paul DaSilva‐Jardine,Alan R. Tall
出处
期刊:Journal of Hepatology [Elsevier BV]
卷期号:76 (2): 383-393 被引量:4
标识
DOI:10.1016/j.jhep.2021.09.021
摘要

•TTC39B is a scaffolding protein that interacts with and promotes the proteasomal degradation of pRb. •TTC39B deficiency increases hepatocyte pRb which inhibits E2F1 activity and lipogenic gene expression in females. •In both sexes, TTC39B deficiency decreases hepatic SCAP protein levels to post-translationally inhibit SREBP-1. •TTC39B inhibition could be a novel strategy to target PNPLA3 and treat NAFLD, especially in women. Background & Aims Molecular mechanisms underlying the different susceptibility of men and women to non-alcoholic fatty liver disease (NAFLD) are poorly understood. The TTC39B locus encodes a scaffolding protein, associates with gynecological disorders and its deletion protects mice from diet-induced steatohepatitis. This study aimed to elucidate the molecular mechanisms linking TTC39B (T39) to the expression of lipogenic genes and to explore sex-specific effects. Methods Co-expression in HEK293A cells validated the novel T39/pRb interaction predicted by a protein-protein interaction algorithm. T39 was knocked down using an antisense oligonucleotide (ASO) in mice with dietary NAFLD and a genetic deficiency of pRb or its downstream effector E2F1, as well as in primary human hepatocytes. Results T39 interacts with pRb via its C-terminal TPR domain and promotes its proteasomal degradation. In female mice, T39 deficiency reduces the mRNA of lipogenic genes, especially Pnpla3, in a pRb- and E2F1-dependent manner. In contrast, in male mice, T39 deficiency results in a much smaller reduction in lipogenic gene expression that is independent of pRb/E2F1. T39 also interacts with VAPB via an N-terminal FFAT motif and stabilizes the interaction of VAPB with SCAP. Ovariectomy abolishes the effect of T39 knockdown on the hepatic pRb/E2F1/Pnpla3 axis. In both sexes T39 knockdown reduces SCAP independently of pRb. In primary human hepatocytes, T39 knockdown reduces expression of PNPLA3 and other lipogenic genes in women but not men. Conclusions We have uncovered a conserved sexual dimorphism in the regulation of hepatic lipogenic genes, with effects of T39 mediated through pRb/E2F1 in females and VAPB/SCAP in both sexes. T39 inhibition could be a novel strategy to downregulate PNPLA3 and treat NAFLD in women. Lay summary In females, the protein TTC39B degrades a tumor suppressor in the liver to promote the synthesis of new fat and the expression of a major genetic risk factor for non-alcoholic fatty liver disease. TTC39B is a potential therapeutic target for non-alcoholic fatty liver disease, especially in women. Molecular mechanisms underlying the different susceptibility of men and women to non-alcoholic fatty liver disease (NAFLD) are poorly understood. The TTC39B locus encodes a scaffolding protein, associates with gynecological disorders and its deletion protects mice from diet-induced steatohepatitis. This study aimed to elucidate the molecular mechanisms linking TTC39B (T39) to the expression of lipogenic genes and to explore sex-specific effects. Co-expression in HEK293A cells validated the novel T39/pRb interaction predicted by a protein-protein interaction algorithm. T39 was knocked down using an antisense oligonucleotide (ASO) in mice with dietary NAFLD and a genetic deficiency of pRb or its downstream effector E2F1, as well as in primary human hepatocytes. T39 interacts with pRb via its C-terminal TPR domain and promotes its proteasomal degradation. In female mice, T39 deficiency reduces the mRNA of lipogenic genes, especially Pnpla3, in a pRb- and E2F1-dependent manner. In contrast, in male mice, T39 deficiency results in a much smaller reduction in lipogenic gene expression that is independent of pRb/E2F1. T39 also interacts with VAPB via an N-terminal FFAT motif and stabilizes the interaction of VAPB with SCAP. Ovariectomy abolishes the effect of T39 knockdown on the hepatic pRb/E2F1/Pnpla3 axis. In both sexes T39 knockdown reduces SCAP independently of pRb. In primary human hepatocytes, T39 knockdown reduces expression of PNPLA3 and other lipogenic genes in women but not men. We have uncovered a conserved sexual dimorphism in the regulation of hepatic lipogenic genes, with effects of T39 mediated through pRb/E2F1 in females and VAPB/SCAP in both sexes. T39 inhibition could be a novel strategy to downregulate PNPLA3 and treat NAFLD in women.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助伶俐问薇采纳,获得10
刚刚
希望天下0贩的0应助大白采纳,获得10
1秒前
情怀应助怕黑的凝旋采纳,获得10
1秒前
mrlow完成签到,获得积分10
1秒前
gelinhao完成签到,获得积分10
2秒前
GEN完成签到,获得积分20
3秒前
3秒前
iiing完成签到,获得积分10
3秒前
3秒前
重要的板凳完成签到,获得积分10
3秒前
Venus完成签到,获得积分10
3秒前
田様应助吹风机采纳,获得10
3秒前
自然的霸完成签到,获得积分10
4秒前
深情安青应助珊珊采纳,获得10
4秒前
壮观的夏蓉完成签到,获得积分0
4秒前
机灵似狮发布了新的文献求助10
4秒前
云深不知处完成签到,获得积分10
5秒前
康丽完成签到,获得积分10
5秒前
7秒前
橘酥酥呀完成签到,获得积分20
7秒前
7秒前
Ava应助微眠采纳,获得10
7秒前
向浩完成签到,获得积分10
7秒前
英姑应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
CCY完成签到,获得积分10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
8秒前
long应助科研通管家采纳,获得10
9秒前
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
Wind应助小鲤鱼采纳,获得20
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
Lyg发布了新的文献求助10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
淡定从凝完成签到,获得积分10
9秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118837
求助须知:如何正确求助?哪些是违规求助? 4324693
关于积分的说明 13473527
捐赠科研通 4157793
什么是DOI,文献DOI怎么找? 2278607
邀请新用户注册赠送积分活动 1280375
关于科研通互助平台的介绍 1219167