Data driven analysis of lithium-ion battery internal resistance towards reliable state of health prediction

内阻 电池(电) 健康状况 锂离子电池 荷电状态 汽车工程 锂(药物) 材料科学 可靠性工程 电池组 计算机科学 电解质 离子 模拟 铅酸蓄电池 电压 工程类 电气工程 功率(物理) 物理 量子力学
作者
Mohammad A. Hoque,Petteri Nurmi,Arjun Kumar,Samu Varjonen,Junehwa Song,Michael Pecht,Sasu Tarkoma
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:513: 230519-230519 被引量:27
标识
DOI:10.1016/j.jpowsour.2021.230519
摘要

Accurately predicting the lifetime of lithium-ion batteries in the early stage is critical for faster battery production, tuning the production line, and predictive maintenance of energy storage systems and battery-powered devices. Diverse usage patterns, variability in the devices housing the batteries, and diversity in their operating conditions pose significant challenges for this task. The contributions of this paper are three-fold. First, a public dataset is used to characterize the behavior of battery internal resistance. Internal resistance has non-linear dynamics as the battery ages, making it an excellent candidate for reliable battery health prediction during early cycles. Second, using these findings, battery health prediction models for different operating conditions are developed. The best models are more than 95% accurate in predicting battery health using the internal resistance dynamics of 100 cycles at room temperature. Thirdly, instantaneous voltage drops due to multiple pulse discharge loads are shown to be capable of characterizing battery heterogeneity in as few as five cycles. The results pave the way toward improved battery models and better efficiency within the production and use of lithium-ion batteries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助无奈又晴采纳,获得10
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
FashionBoy应助Morton采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
小马甲应助小树苗采纳,获得20
2秒前
无限续发布了新的文献求助10
2秒前
天真千易发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
天真千易发布了新的文献求助10
4秒前
疯狂的大闸蟹完成签到,获得积分10
4秒前
天真千易发布了新的文献求助30
4秒前
4秒前
王小茹完成签到,获得积分10
5秒前
5秒前
天真千易发布了新的文献求助10
5秒前
天真千易发布了新的文献求助10
5秒前
章山蝶发布了新的文献求助10
5秒前
天真千易发布了新的文献求助10
5秒前
天真千易发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525236
求助须知:如何正确求助?哪些是违规求助? 4615551
关于积分的说明 14548959
捐赠科研通 4553590
什么是DOI,文献DOI怎么找? 2495405
邀请新用户注册赠送积分活动 1475947
关于科研通互助平台的介绍 1447675