材料科学
共晶体系
浸出(土壤学)
溶解度
溶解
陶瓷
锕系元素
氧化物
烧结
相(物质)
化学工程
铀
成核
化学稳定性
氧化铀
熔盐
矿物学
分析化学(期刊)
冶金
无机化学
化学
合金
物理化学
地质学
色谱法
有机化学
土壤水分
土壤科学
工程类
作者
Shengtai Zhang,Baoliang Xu,Jingkai Cheng,Shilin Luo,Yi Ding,Shiyin Ji,Tao Duan,Jianjun Ma,Cairong Jiang
摘要
Abstract Molten salt provides a fast mass transfer and nucleation process, so the ceramic solid solution for immobilization of high‐level nuclear waste (HLW) can be synthesized at lower temperatures. The chemical stability in the process of interaction with groundwater determines the ability of the matrix phase to prevent radionuclides from entering the biosphere. Nd‐doped Y 3 Fe 5 O 12 ceramics were prepared by the molten salt method at different sintering temperatures (1000℃, 1100℃, 1200℃) and different m (eutectic salt): m (oxide) ratios (2:1, 3:1, 4:1). The sintered ceramic is Y 3‐x Nd x Fe 5 O 12 , where x is the solubility of Nd in YIG. The results show that the optimum mass ratio of molten salt to oxide is 3:1. The solubility of Nd in garnet is 33.3 mol% ( x = 1.1) and 56.7 mol% ( x = 1.6) at 1100℃ and 1200℃, respectively. In the neutral medium, Nd does not transfer to the liquid phase. Acid leaching promotes the strong dissolution of the garnet matrix. In this case, the leaching rate of Nd from ceramics to the liquid phase is two to three orders of magnitude higher than that in a neutral medium. The experimental results suggest that garnet matrices can reliably immobilize actinides in subsurface repositories.
科研通智能强力驱动
Strongly Powered by AbleSci AI